Using hydraulic power steering system of model EIMCO 922 load-haul-dump vehicle as a simulation example, the dynamic characteristics of hydraulic power steering system in load-haul-dump vehicle were simulated and disc...Using hydraulic power steering system of model EIMCO 922 load-haul-dump vehicle as a simulation example, the dynamic characteristics of hydraulic power steering system in load-haul-dump vehicle were simulated and discussed with SIMULINK software and hydraulic control theory. The results show that the dynamic characteristics of hydraulic power steering system are improved obviously by using bladder accumulator, the hydraulic power steering system of model EIMCO 922 load-haul-dump vehicle generates vibration at the initial stage under the normal steering condition of pulse input, and its static response time is 0.25 s shorter than that without bladder accumulator. Under the normal steering working condition, the capacity of steering accumulator for absorbing pulse is directly proportional to the cross section area of connecting pipeline, and inversely proportional to the length of connecting pipeline. At the same time, the precharge pressure of nitrogen in steering accumulator should be 60%80% of the rated minimum working pressure of hydraulic power steering system. Under the abnormal steering working condition, the steering cylinder piston may obtain higher motion velocity, and the dynamic response velocity of hydraulic power steering system can be increased by reducing the pressure drop of hydraulic pipelines between the accumulator and steering cylinder and by increasing the rated pressure of hydraulic power steering system, but the dynamic characteristics of hydraulic power steering system in load-haul-dump vehicle have nothing to do with the precharge pressure of nitrogen in steering accumulator.展开更多
The increasing awareness of climate change has led organizations to demand a standard procedure to measure and communicate greenhouse gas(GHG) emissions linked to their products or services.The publicly available spec...The increasing awareness of climate change has led organizations to demand a standard procedure to measure and communicate greenhouse gas(GHG) emissions linked to their products or services.The publicly available specification PAS 2050 has been developed in response to broad community and industry desire for a consistent method-carbon footprint for assessing the life cycle GHG emissions of goods and services.Specifically,this paper illustrates the implementation of carbon footprint for a baby stroller in accordance with PAS 2050.A fial value of 321 kg per one stroller including package was calculated.Moreover,the study led to identify raw materials production of the stroller as the main source of GHS emissions where efforts need to focus for emission reduction opportunities.This case study is hoped to be a starting point for organizations to benefit from the increasing application of carbon footprint assessment.展开更多
An algorithm based on the Boundary Element Method(BEM)is presented for designing the High Skew Propeller(HSP)used in an Underwater Vehicle(UV).Since UVs operate under two different kinds of working conditions(i.e.surf...An algorithm based on the Boundary Element Method(BEM)is presented for designing the High Skew Propeller(HSP)used in an Underwater Vehicle(UV).Since UVs operate under two different kinds of working conditions(i.e.surface and submerged conditions),the design of such a propeller is an unwieldy task.This is mainly due to the fact that the resistance forces as well as the vessel efficiency under these conditions are significantly different.Therefore,some factors are necessary for the design of the opti-mum propeller to utilize the power under the mentioned conditions.The design objectives of the optimum propeller are to obtain the highest possible thrust and efficiency with the minimum torque.For the current UV,the main dimensions of the propeller are pre-dicted based on the given required thrust and the defined operating conditions.These dimensions(number of blades,pitch,diameter,expanded area ratio,thickness and camber)are determined through iterative procedure.Because the propeller operates at the stern of the UV where the inflow velocity to the propeller is non-uniform,a 5-blade HSP is preferred for running the UV.Finally,the propel-ler is designed based on the numerical calculations to acquire the improved hydrodynamic efficiency.展开更多
The roundabouts are widely used in China,some of which have central islands as scenic spots.The crosswalks connecting to the central islands,normally full of pedestrians,have negative impact on roundabout capability a...The roundabouts are widely used in China,some of which have central islands as scenic spots.The crosswalks connecting to the central islands,normally full of pedestrians,have negative impact on roundabout capability and pedestrian safety.Therefore,this study proposes a fuzzy cellular automata(FCA)model to explore the safety and efficiency impacts of pedestrian-vehicle conflicts at a two-lane roundabout.To reason the decision-making process of individual drivers before crosswalks,membership functions in the fuzzy inference system were calibrated with field data conducted in Changsha,China.Using specific indicators of efficiency and safety performance,it was shown that circulating vehicles can move smoothly in low traffic flow,but the roundabout system is prone to the traffic congestion if traffic flow reaches to a certain level.Also,the high yielding rate of drivers has a negative impact on the traffic efficiency but can improve pedestrian safety.Furthermore,a pedestrian restriction measure was deduced for the roundabout crosswalk from the FCA model and national guideline of setting traffic lights.展开更多
Trains are prone to delays and deviations from train operation plans during their operation because of internal or external disturbances. Delays may develop into operational conflicts between adjacent trains as a resu...Trains are prone to delays and deviations from train operation plans during their operation because of internal or external disturbances. Delays may develop into operational conflicts between adjacent trains as a result of delay propagation, which may disturb the arrangement of the train operation plan and threaten the operational safety of trains. Therefore, reliable conflict prediction results can be valuable references for dispatchers in making more efficient train operation adjustments when conflicts occur. In contrast to the traditional approach to conflict prediction that involves introducing random disturbances, this study addresses the issue of the fuzzification of time intervals in a train timetable based on historical statistics and the modeling of a high-speed railway train timetable based on the concept of a timed Petri net. To measure conflict prediction results more comprehensively, we divided conflicts into potential conflicts and certain conflicts and defined the judgment conditions for both. Two evaluation indexes, one for the deviation of a single train and one for the possibility of conflicts between adjacent train operations, were developed using a formalized computation method. Based on the temporal fuzzy reasoning method, with some adjustment, a new conflict prediction method is proposed, and the results of a simulation example for two scenarios are presented. The results prove that conflict prediction after fuzzy processing of the time intervals of a train timetable is more reliable and practical and can provide helpful information for use in train operation adjustment, train timetable improvement, and other purposes.展开更多
This paper discusses the design of the propulsion system of the UAQ4 (University of L'Aquila, model 4) magnetic levitating train which is used for transportation applications in urban environments. UAQ4 is the only...This paper discusses the design of the propulsion system of the UAQ4 (University of L'Aquila, model 4) magnetic levitating train which is used for transportation applications in urban environments. UAQ4 is the only magnetic levitating vehicle with resistance motion, except for aerodynamic drag and with energy consumption near zero at low speed. The feasibility of the system has been successfully verified and tested in the laboratory. Propulsion and braking are provided by a novel direct-current linear stepper motor, with the primary formed by permanent magnets distributed on central beam of the track, and the secondary by coils on board the vehicle, instead of the present alternate current linear motors that have well-known disadvantages. The motor working principles are described, and its performances are analyzed, by a finite element numerical model which allows modifying the most important parameters of the system. The main components of a full scale motor for urban transportation are measured and discussed.展开更多
This paper presents the construction of a pneumatic active suspension system for a one-wheel car model using fuzzy reasoning and a disturbance observer. The one-wheel car model can be approximately described as a nonl...This paper presents the construction of a pneumatic active suspension system for a one-wheel car model using fuzzy reasoning and a disturbance observer. The one-wheel car model can be approximately described as a nonlinear two degrees of freedom system subject to excitation from a road profile. The active control is composed of fuzzy and disturbance controls, and the active control force is constructed by actuating a pneumatic actuator. A phase lead-lag compensator is inserted to counter the performance degradation due to the delay of the pneumatic actuator. The experimental result indicates that the proposed active suspension improves much the vibration suppression of the car model.展开更多
The reliable and intelligent propulsion pressurization system is one of the key technologies of new Chinese generation launch vehicles; a high reliability design is an important guarantee for the success of launching....The reliable and intelligent propulsion pressurization system is one of the key technologies of new Chinese generation launch vehicles; a high reliability design is an important guarantee for the success of launching. This paper analyzes the domestic and overseas liquid launch vehicles in the area of propulsion pressurization systems, based on comprehensive analysis, demonstrating the reliable and intelligent propulsion pressurization system of the Long March 7(Simplified as LM-7) has been raised. By applying a full chain redundancy design, setting proper pressure control bandwidth and control mode reconstruction under extreme fault conditions, the reliability and adaptability of the propulsion pressurization system has enhanced significantly. In addition, the complete system has been verified by the first two flights of LM-7.展开更多
The characteristics of several different linear motors have been investigated, and the feed drive system with linear motor instead of screw-nut mechanism has been built for a submicro ultraprecision turning machine. I...The characteristics of several different linear motors have been investigated, and the feed drive system with linear motor instead of screw-nut mechanism has been built for a submicro ultraprecision turning machine. In the control system for the feed drive system arranged as "T", both P-position and PI-speed control loops are used. The feedback variable is obtained from a double frequecy laser interferometor. Experiments show that the feed drive with linear motor is simple in construction, and that its dynamics is better than others. So the machining accuracy of the workpiece machined has been successfully improved.展开更多
In this paper, implantation of fuzzy logic controller for parallel hybrid electric vehicles (PHEV) is presented. In PHEV the required torque is generated by a combination of internal-combustion engine (ICE) and an...In this paper, implantation of fuzzy logic controller for parallel hybrid electric vehicles (PHEV) is presented. In PHEV the required torque is generated by a combination of internal-combustion engine (ICE) and an electric motor. The controller simulated using the SIMULINK/MATLAB package. The controller is designed based on the desired speed for driving and the state of speed error. In the other hand, performance of PHEV and ICE under different road cycle is given. The hardware setup is done for electric propulsion system; the system contains the induction motor, the three phase IGBT inverter with control circuit using microcontroller. The closed loop control system used a DC permanent generator whose output voltage is related to motor speed. Comparison between simulation and experimental results show accurate matching.展开更多
Numerical investigation of a supersonic jet from the nose of a lifting-body vehicle opposing a hypersonic flow with the freestream Mach number being 8.0 at 40 km altitude was carried out by solving the three-dimension...Numerical investigation of a supersonic jet from the nose of a lifting-body vehicle opposing a hypersonic flow with the freestream Mach number being 8.0 at 40 km altitude was carried out by solving the three-dimensional, time-accurate Navier-Stokes equations with a hybrid meshes approach. Based on the analysis of the flow field structures and aerodynamic characteristics, the behaviours relevant to the LPM jet were discussed in detail, including the drag reduction effect, the periodic oscillation and the feedback loop. The obtained results show that the flow oscillation characteristic of the LPM jet is low-frequency and high-amplitude while that of the SPM jet is high-frequency and low-amplitude. Compared with the clearly dominant frequencies of the LPM jet, the SPM jet exhibits a broad-band structure. The LPM jet can sustain drag reduction effect until the angle of attack is 8°, and the lift-to-drag ratio of the vehicle is effectively improved by 6.95% at angle of attack of 6°. The self-sustained oscillation process was studied by a typical oscillating cycle of the drag force coefficient and the variation of the instantaneous pressure distribution,which reveals an off-axial flapping motion of the conical shear layer. The variation of the subsonic recirculation zone ahead of the vehicle nose strengthens the understanding of the jet behavior including the source of instability in the long penetration mode and the mechanism of the feedback loop. The aim of this paper is to advance the technology readiness level for the counterflowing jet applied as an active control technology in hypersonic flows by gaining a better insight of the flow physics.展开更多
Actively pushing design knowledge to designers in the design process, what we call ‘knowledge push', can help improve the efficiency and quality of intelligent product design. A knowledge push technology usually inc...Actively pushing design knowledge to designers in the design process, what we call ‘knowledge push', can help improve the efficiency and quality of intelligent product design. A knowledge push technology usually includes matching of related knowledge and proper pushing of matching results. Existing approaches on knowledge matching commonly have a lack of intelligence. Also, the pushing of matching results is less personalized. In this paper, we propose a knowledge push technology based on applicable probability matching and multidimensional context driving. By building a training sample set, including knowledge description vectors, case feature vectors, and the mapping Boolean matrix, two probability values, application and non-application, were calculated via a Bayesian theorem to describe the matching degree between knowledge and content. The push results were defined by the comparison between two probability values. The hierarchical design content models were built to filter the knowledge in push results. The rules of personalized knowledge push were sorted by multidimensional contexts, which include design knowledge, design context, design content, and the designer. A knowledge push system based on intellectualized design of CNC machine tools was used to confirm the feasibility of the proposed technology in engineering applications.展开更多
文摘Using hydraulic power steering system of model EIMCO 922 load-haul-dump vehicle as a simulation example, the dynamic characteristics of hydraulic power steering system in load-haul-dump vehicle were simulated and discussed with SIMULINK software and hydraulic control theory. The results show that the dynamic characteristics of hydraulic power steering system are improved obviously by using bladder accumulator, the hydraulic power steering system of model EIMCO 922 load-haul-dump vehicle generates vibration at the initial stage under the normal steering condition of pulse input, and its static response time is 0.25 s shorter than that without bladder accumulator. Under the normal steering working condition, the capacity of steering accumulator for absorbing pulse is directly proportional to the cross section area of connecting pipeline, and inversely proportional to the length of connecting pipeline. At the same time, the precharge pressure of nitrogen in steering accumulator should be 60%80% of the rated minimum working pressure of hydraulic power steering system. Under the abnormal steering working condition, the steering cylinder piston may obtain higher motion velocity, and the dynamic response velocity of hydraulic power steering system can be increased by reducing the pressure drop of hydraulic pipelines between the accumulator and steering cylinder and by increasing the rated pressure of hydraulic power steering system, but the dynamic characteristics of hydraulic power steering system in load-haul-dump vehicle have nothing to do with the precharge pressure of nitrogen in steering accumulator.
基金financially and technically supported by Bugaboo (Xiamen) Companythe Fundamental Research Funds No. 2010121035 for the Central Universities of China
文摘The increasing awareness of climate change has led organizations to demand a standard procedure to measure and communicate greenhouse gas(GHG) emissions linked to their products or services.The publicly available specification PAS 2050 has been developed in response to broad community and industry desire for a consistent method-carbon footprint for assessing the life cycle GHG emissions of goods and services.Specifically,this paper illustrates the implementation of carbon footprint for a baby stroller in accordance with PAS 2050.A fial value of 321 kg per one stroller including package was calculated.Moreover,the study led to identify raw materials production of the stroller as the main source of GHS emissions where efforts need to focus for emission reduction opportunities.This case study is hoped to be a starting point for organizations to benefit from the increasing application of carbon footprint assessment.
基金supported by the marine research center of Amirkabir University of Technology
文摘An algorithm based on the Boundary Element Method(BEM)is presented for designing the High Skew Propeller(HSP)used in an Underwater Vehicle(UV).Since UVs operate under two different kinds of working conditions(i.e.surface and submerged conditions),the design of such a propeller is an unwieldy task.This is mainly due to the fact that the resistance forces as well as the vessel efficiency under these conditions are significantly different.Therefore,some factors are necessary for the design of the opti-mum propeller to utilize the power under the mentioned conditions.The design objectives of the optimum propeller are to obtain the highest possible thrust and efficiency with the minimum torque.For the current UV,the main dimensions of the propeller are pre-dicted based on the given required thrust and the defined operating conditions.These dimensions(number of blades,pitch,diameter,expanded area ratio,thickness and camber)are determined through iterative procedure.Because the propeller operates at the stern of the UV where the inflow velocity to the propeller is non-uniform,a 5-blade HSP is preferred for running the UV.Finally,the propel-ler is designed based on the numerical calculations to acquire the improved hydrodynamic efficiency.
基金Project(2020YFB1600400)supported by the National Key Research and Development Program of ChinaProject(2019JJ50837)supported by the Natural Science Foundation of Hunan Province,ChinaProject(71801227)supported by the National Natural Science Foundation of China。
文摘The roundabouts are widely used in China,some of which have central islands as scenic spots.The crosswalks connecting to the central islands,normally full of pedestrians,have negative impact on roundabout capability and pedestrian safety.Therefore,this study proposes a fuzzy cellular automata(FCA)model to explore the safety and efficiency impacts of pedestrian-vehicle conflicts at a two-lane roundabout.To reason the decision-making process of individual drivers before crosswalks,membership functions in the fuzzy inference system were calibrated with field data conducted in Changsha,China.Using specific indicators of efficiency and safety performance,it was shown that circulating vehicles can move smoothly in low traffic flow,but the roundabout system is prone to the traffic congestion if traffic flow reaches to a certain level.Also,the high yielding rate of drivers has a negative impact on the traffic efficiency but can improve pedestrian safety.Furthermore,a pedestrian restriction measure was deduced for the roundabout crosswalk from the FCA model and national guideline of setting traffic lights.
文摘Trains are prone to delays and deviations from train operation plans during their operation because of internal or external disturbances. Delays may develop into operational conflicts between adjacent trains as a result of delay propagation, which may disturb the arrangement of the train operation plan and threaten the operational safety of trains. Therefore, reliable conflict prediction results can be valuable references for dispatchers in making more efficient train operation adjustments when conflicts occur. In contrast to the traditional approach to conflict prediction that involves introducing random disturbances, this study addresses the issue of the fuzzification of time intervals in a train timetable based on historical statistics and the modeling of a high-speed railway train timetable based on the concept of a timed Petri net. To measure conflict prediction results more comprehensively, we divided conflicts into potential conflicts and certain conflicts and defined the judgment conditions for both. Two evaluation indexes, one for the deviation of a single train and one for the possibility of conflicts between adjacent train operations, were developed using a formalized computation method. Based on the temporal fuzzy reasoning method, with some adjustment, a new conflict prediction method is proposed, and the results of a simulation example for two scenarios are presented. The results prove that conflict prediction after fuzzy processing of the time intervals of a train timetable is more reliable and practical and can provide helpful information for use in train operation adjustment, train timetable improvement, and other purposes.
文摘This paper discusses the design of the propulsion system of the UAQ4 (University of L'Aquila, model 4) magnetic levitating train which is used for transportation applications in urban environments. UAQ4 is the only magnetic levitating vehicle with resistance motion, except for aerodynamic drag and with energy consumption near zero at low speed. The feasibility of the system has been successfully verified and tested in the laboratory. Propulsion and braking are provided by a novel direct-current linear stepper motor, with the primary formed by permanent magnets distributed on central beam of the track, and the secondary by coils on board the vehicle, instead of the present alternate current linear motors that have well-known disadvantages. The motor working principles are described, and its performances are analyzed, by a finite element numerical model which allows modifying the most important parameters of the system. The main components of a full scale motor for urban transportation are measured and discussed.
文摘This paper presents the construction of a pneumatic active suspension system for a one-wheel car model using fuzzy reasoning and a disturbance observer. The one-wheel car model can be approximately described as a nonlinear two degrees of freedom system subject to excitation from a road profile. The active control is composed of fuzzy and disturbance controls, and the active control force is constructed by actuating a pneumatic actuator. A phase lead-lag compensator is inserted to counter the performance degradation due to the delay of the pneumatic actuator. The experimental result indicates that the proposed active suspension improves much the vibration suppression of the car model.
文摘The reliable and intelligent propulsion pressurization system is one of the key technologies of new Chinese generation launch vehicles; a high reliability design is an important guarantee for the success of launching. This paper analyzes the domestic and overseas liquid launch vehicles in the area of propulsion pressurization systems, based on comprehensive analysis, demonstrating the reliable and intelligent propulsion pressurization system of the Long March 7(Simplified as LM-7) has been raised. By applying a full chain redundancy design, setting proper pressure control bandwidth and control mode reconstruction under extreme fault conditions, the reliability and adaptability of the propulsion pressurization system has enhanced significantly. In addition, the complete system has been verified by the first two flights of LM-7.
文摘The characteristics of several different linear motors have been investigated, and the feed drive system with linear motor instead of screw-nut mechanism has been built for a submicro ultraprecision turning machine. In the control system for the feed drive system arranged as "T", both P-position and PI-speed control loops are used. The feedback variable is obtained from a double frequecy laser interferometor. Experiments show that the feed drive with linear motor is simple in construction, and that its dynamics is better than others. So the machining accuracy of the workpiece machined has been successfully improved.
文摘In this paper, implantation of fuzzy logic controller for parallel hybrid electric vehicles (PHEV) is presented. In PHEV the required torque is generated by a combination of internal-combustion engine (ICE) and an electric motor. The controller simulated using the SIMULINK/MATLAB package. The controller is designed based on the desired speed for driving and the state of speed error. In the other hand, performance of PHEV and ICE under different road cycle is given. The hardware setup is done for electric propulsion system; the system contains the induction motor, the three phase IGBT inverter with control circuit using microcontroller. The closed loop control system used a DC permanent generator whose output voltage is related to motor speed. Comparison between simulation and experimental results show accurate matching.
基金supported by the Aerospace International Innovation Talent Cultivation Project of Program China Scholarship Councilthe National Natural Science Foundation of China(Grant No.11502291)
文摘Numerical investigation of a supersonic jet from the nose of a lifting-body vehicle opposing a hypersonic flow with the freestream Mach number being 8.0 at 40 km altitude was carried out by solving the three-dimensional, time-accurate Navier-Stokes equations with a hybrid meshes approach. Based on the analysis of the flow field structures and aerodynamic characteristics, the behaviours relevant to the LPM jet were discussed in detail, including the drag reduction effect, the periodic oscillation and the feedback loop. The obtained results show that the flow oscillation characteristic of the LPM jet is low-frequency and high-amplitude while that of the SPM jet is high-frequency and low-amplitude. Compared with the clearly dominant frequencies of the LPM jet, the SPM jet exhibits a broad-band structure. The LPM jet can sustain drag reduction effect until the angle of attack is 8°, and the lift-to-drag ratio of the vehicle is effectively improved by 6.95% at angle of attack of 6°. The self-sustained oscillation process was studied by a typical oscillating cycle of the drag force coefficient and the variation of the instantaneous pressure distribution,which reveals an off-axial flapping motion of the conical shear layer. The variation of the subsonic recirculation zone ahead of the vehicle nose strengthens the understanding of the jet behavior including the source of instability in the long penetration mode and the mechanism of the feedback loop. The aim of this paper is to advance the technology readiness level for the counterflowing jet applied as an active control technology in hypersonic flows by gaining a better insight of the flow physics.
基金Project supported by the National Natural Science Foundation of China(No.51675478)the Natural Science Foundation of Zhejiang Province,China(No.LY15E050004)Youth Funds of the State Key Laboratory of Fluid Power&Mechatronic Systems,Zhejiang University
文摘Actively pushing design knowledge to designers in the design process, what we call ‘knowledge push', can help improve the efficiency and quality of intelligent product design. A knowledge push technology usually includes matching of related knowledge and proper pushing of matching results. Existing approaches on knowledge matching commonly have a lack of intelligence. Also, the pushing of matching results is less personalized. In this paper, we propose a knowledge push technology based on applicable probability matching and multidimensional context driving. By building a training sample set, including knowledge description vectors, case feature vectors, and the mapping Boolean matrix, two probability values, application and non-application, were calculated via a Bayesian theorem to describe the matching degree between knowledge and content. The push results were defined by the comparison between two probability values. The hierarchical design content models were built to filter the knowledge in push results. The rules of personalized knowledge push were sorted by multidimensional contexts, which include design knowledge, design context, design content, and the designer. A knowledge push system based on intellectualized design of CNC machine tools was used to confirm the feasibility of the proposed technology in engineering applications.