From March to May, 2004, we selected 8 typical parks or green lands in Shanghai downtown as the study sites to conduct a ornithological research. During this study, total 55 species of birds were recorded, which inclu...From March to May, 2004, we selected 8 typical parks or green lands in Shanghai downtown as the study sites to conduct a ornithological research. During this study, total 55 species of birds were recorded, which included 31 resident and 24 migratory species. With statistics methodology, we analyzed the avian communities with 10 major environmental factors covering the park area, water percentage, vegetation species, canopy cover, shrub cover, grass cover, hill number, location condition, human quantity, path width, the study results indicated that: (1) the following 7 environmental factors were important to impact the structures of the avian community, they were park area, vegetation species, shrub coverage, grass coverage, hill number, location condition of the parks and path width; (2) the avian community of theses urban parks tended to deteriorate in the bird number and diversity; the man-made lake which was currently promoted in the park designing and planning process would not be good to attract the birds.展开更多
Urban forest soil infiltration, affected by various factors, is closely related with surface runoff. This paper studied the effect of urban forest types, vegetation configuration and soil properties on soil infiltrati...Urban forest soil infiltration, affected by various factors, is closely related with surface runoff. This paper studied the effect of urban forest types, vegetation configuration and soil properties on soil infiltration. In our study, 191 typical plots were sampled in Changchun City, China to investigate the soil infiltration characteristics of urban forest and its influencing factors. Our results showed that the steady infiltration rates of urban forest soil were highly variable. High variations in the final infiltration rates were observed for different vegetation patterns and compaction degrees. Trees with shrubs and grasses had the highest infiltration rate and trees with bare land had the lowest infiltration rate. In addition, our results showed that the soil infiltration rate decreased with an increase in the bulk density and with a reduction in the soil organic matter content and non-capillary porosity. The soil infiltration rate also had significantly positive relationships with the total porosity and saturated soil water content. Urban soil compaction contributed to low soil infiltration rates. To increase the infiltration rate and water storage volume of urban forest soil, proper techniques to minimize and mitigate soil compaction should be used. These findings can provide useful information for urban planners about how to maximize the water volume of urban forest soil and decrease urban instantaneous flooding.展开更多
In this paper,we study the interactive relationship between the agglomeration of urban elements and the evolution of eco-environmental pressure.We build an index system for evaluating the agglomeration of urban elemen...In this paper,we study the interactive relationship between the agglomeration of urban elements and the evolution of eco-environmental pressure.We build an index system for evaluating the agglomeration of urban elements and eco-environmental pressure.Using the entropy method and response intensity model,we analyze how urban elements agglomeration influenced eco-environmental pressure in Changchun from 1990 to 2012,eliciting the changing features and influential factors.Ultimately,we conclude there is a significant interactive relationship between the agglomeration of urban elements and the evolution of eco-environmental pressure in Changchun.This is inferred from the degree of this agglomeration in Changchun having increased since 1990,with the degree of eco-environmental pressure first decreasing and then increasing.Alongside this,the impact of urban elements agglomeration on eco-environmental pressure has changed from negative to positive.The main reasons behind this shift are arguably the rapid growth of urban investment and ongoing urbanization.展开更多
文摘From March to May, 2004, we selected 8 typical parks or green lands in Shanghai downtown as the study sites to conduct a ornithological research. During this study, total 55 species of birds were recorded, which included 31 resident and 24 migratory species. With statistics methodology, we analyzed the avian communities with 10 major environmental factors covering the park area, water percentage, vegetation species, canopy cover, shrub cover, grass cover, hill number, location condition, human quantity, path width, the study results indicated that: (1) the following 7 environmental factors were important to impact the structures of the avian community, they were park area, vegetation species, shrub coverage, grass coverage, hill number, location condition of the parks and path width; (2) the avian community of theses urban parks tended to deteriorate in the bird number and diversity; the man-made lake which was currently promoted in the park designing and planning process would not be good to attract the birds.
基金Under the auspices of Excellent Young Scholars of Northeast Institute of Geography and Agroecology,Chinese Academy of Sciences(No.DLSYQ 13004)Chinese Academy of Sciences/State Administration of Foreign Experts Affairs International Partnership Program for Creative Research Teams(No.KZZD-EW-TZ-07-09)Strategic Priority Research Program of Chinese Academy of Sciences(No.KFZD-SW-302-03)
文摘Urban forest soil infiltration, affected by various factors, is closely related with surface runoff. This paper studied the effect of urban forest types, vegetation configuration and soil properties on soil infiltration. In our study, 191 typical plots were sampled in Changchun City, China to investigate the soil infiltration characteristics of urban forest and its influencing factors. Our results showed that the steady infiltration rates of urban forest soil were highly variable. High variations in the final infiltration rates were observed for different vegetation patterns and compaction degrees. Trees with shrubs and grasses had the highest infiltration rate and trees with bare land had the lowest infiltration rate. In addition, our results showed that the soil infiltration rate decreased with an increase in the bulk density and with a reduction in the soil organic matter content and non-capillary porosity. The soil infiltration rate also had significantly positive relationships with the total porosity and saturated soil water content. Urban soil compaction contributed to low soil infiltration rates. To increase the infiltration rate and water storage volume of urban forest soil, proper techniques to minimize and mitigate soil compaction should be used. These findings can provide useful information for urban planners about how to maximize the water volume of urban forest soil and decrease urban instantaneous flooding.
基金Under the auspices of Education Ministry for Development of Liberal Arts and Social Science(No.14YJA790035)
文摘In this paper,we study the interactive relationship between the agglomeration of urban elements and the evolution of eco-environmental pressure.We build an index system for evaluating the agglomeration of urban elements and eco-environmental pressure.Using the entropy method and response intensity model,we analyze how urban elements agglomeration influenced eco-environmental pressure in Changchun from 1990 to 2012,eliciting the changing features and influential factors.Ultimately,we conclude there is a significant interactive relationship between the agglomeration of urban elements and the evolution of eco-environmental pressure in Changchun.This is inferred from the degree of this agglomeration in Changchun having increased since 1990,with the degree of eco-environmental pressure first decreasing and then increasing.Alongside this,the impact of urban elements agglomeration on eco-environmental pressure has changed from negative to positive.The main reasons behind this shift are arguably the rapid growth of urban investment and ongoing urbanization.