To save finite-difference time-domain(FDTD) computing time, several methods are proposed to convert the time domain FDTD output into frequency domain. The Pad6 approximation with Baker's algorithm and the program a...To save finite-difference time-domain(FDTD) computing time, several methods are proposed to convert the time domain FDTD output into frequency domain. The Pad6 approximation with Baker's algorithm and the program are introduced to simulate photonic crystal structures. For a simple pole system with frequency 160THz and quality factor of 5000, the intensity spectrum obtained by the Padé approximation from a 2^8-item sequence output is more exact than that obtained by fast Fourier transformation from a 2^20-item sequence output. The mode frequencies and quality factors are calculated at different wave vectors for the photonic crystal slab from a much shorter FDTD output than that required by the FFT method, and then the band diagrams are obatined. In addition, mode frequencies and Q-factors are calculated for photonic crystal microcavity.展开更多
According to the failure characteristics of aircraft structure, a delay-time model is an effective method to optimize maintenance for aircraft structure. To imitate the practical situation as much as possible, imperfe...According to the failure characteristics of aircraft structure, a delay-time model is an effective method to optimize maintenance for aircraft structure. To imitate the practical situation as much as possible, imperfect inspections, thresholds and repeated intervals are concerned in delay-time models. Since the suggestion by the existing delay-time models that the inspections are implemented in an infinite time span lacks practical value, a de- lay-time model with imperfect inspection within a finite time span is proposed. In the model, the nonhomogenous Poisson process is adopted to obtain the renewal probabilities between two different successive inspections on de- fects or failures. An algorithm is applied based on the Nelder-Mead downhill simplex method to solve the model. Finally, a numerical example proves the validity and effectiveness of the model.展开更多
With the entropy generation minimization (EGM) method, the thermodynamical performance optimization in a thermoelectric refrigeration system is studied. The optimization is affected by the irreversibility of heat tr...With the entropy generation minimization (EGM) method, the thermodynamical performance optimization in a thermoelectric refrigeration system is studied. The optimization is affected by the irreversibility of heat transfer caused by finite temperature differences, the heat leak between external heat reservoirs and the internal dissipation of working fluids. EGM is taken as an objective function for the optimization. The objective function and design parameters are obtained. Optimal performance curves are presented by thermal and electronic parameters. Effects of these parameters on general and optimal performances are investigated. Results are helpful in determining optimal design conditions in real thermoelectric refrigeration systems.展开更多
Array acoustic logging plays an important role in formation evaluation. Its data is a non-linear and non-stationary signal and array acoustic logging signals have time-varying spectrum characteristics. Traditional fil...Array acoustic logging plays an important role in formation evaluation. Its data is a non-linear and non-stationary signal and array acoustic logging signals have time-varying spectrum characteristics. Traditional filtering methods are inadequate. We introduce a Hilbert- Huang transform (HHT) which makes full preservation of the non-linear and non-stationary characteristics and has great advantages in the acoustic signal filtering. Using the empirical mode decomposition (EMD) method, the acoustic log waveforms can be decomposed into a finite and often small number of intrinsic mode functions (IMF). The results of applying HHT to real array acoustic logging signal filtering and de-noising are presented to illustrate the efficiency and power of this new method.展开更多
Consider two dependent renewal risk models with constant interest rate. By using some methods in the risk theory, uniform asymptotics for finite-time ruin probability is derived in a non-compound risk model, where cla...Consider two dependent renewal risk models with constant interest rate. By using some methods in the risk theory, uniform asymptotics for finite-time ruin probability is derived in a non-compound risk model, where claim sizes are upper tail asymptotically independent random variables with dominatedly varying tails, claim inter-arrival times follow the widely lower orthant dependent structure, and the total amount of premiums is a nonnegative stochastic process. Based on the obtained result, using the method of analysis for the tail probability of random sums, a similar result in a more complex and reasonable compound risk model is also obtained, where individual claim sizes are specialized to be extended negatively dependent and accident inter-arrival times are still widely lower orthant dependent, and both the claim sizes and the claim number have dominatedly varying tails.展开更多
The microstructure and mechanical properties of Mg94Zn2Y4 extruded alloy containing long-period stacking ordered structures were systematically investigated by SEM and TEM analyses. The results show that the 18R-LPSO ...The microstructure and mechanical properties of Mg94Zn2Y4 extruded alloy containing long-period stacking ordered structures were systematically investigated by SEM and TEM analyses. The results show that the 18R-LPSO structure and α-Mg phase are observed in cast Mg94Zn2Y4 alloy. After extrusion, the LPSO structures are delaminated and Mg-slices with width of 50-200 nm are generated. By ageing at 498 K for 36 h, the ageing peak is attained andβ′phase is precipitated. Due to this novel precipitation, the microhardness ofα-Mg matrix increases apparently from HV108.9 to HV129.7. While the microhardness for LPSO structure is stabilized at about HV145. TEM observations and SAED patterns indicate that the β′ phase has unique orientation relationships betweenα-Mg and LPSO structures, the direction in the close-packed planes ofβ′precipitates perpendicular to that ofα-Mg and LPSO structures. The ultimate tensile strength for the peak-aged alloy achieves 410.7 MPa and the significant strength originates from the coexistence ofβ′precipitates and 18R-LPSO structures.展开更多
Research about the auto commuter's pre-trip route choice behavior ignores the combined influence of the real-time information and all respondents' historical information in the existing documents.To overcome this sh...Research about the auto commuter's pre-trip route choice behavior ignores the combined influence of the real-time information and all respondents' historical information in the existing documents.To overcome this shortcoming,an approach to describing the pre-trip route choice behavior with the incorporation of the real-time and historical information is proposed.Two types of real-time information are investigated,which are quantitative information and prescriptive information.By using the bounded rationality theory,the influence of historical information on the real-time information reference process is examined first.Estimation results show that the historical information has a significant influence on the quantitative information reference process,but not on the prescriptive information reference process.Then the route choice behavior is modeled.A comparison is also made among three route choice models,one of which does not incorporate the real-time information reference process,while the others do.Estimation results show that the route choice behavior is better described with the consideration of the reference process of both quantitative and prescriptive information.展开更多
We calculate the multicomponent responses of surface-hole transient electromagnetic method. The methods and models are unsuitable as geoelectric models of conductive surrounding rocks because they are based on regular...We calculate the multicomponent responses of surface-hole transient electromagnetic method. The methods and models are unsuitable as geoelectric models of conductive surrounding rocks because they are based on regular local targets. We also propose a calculation and analysis scheme based on numerical simulations of the subsurface transient electromagnetic fields. In the modeling of the electromagnetic fields, the forward modeling simulations are performed by using the finite-difference time-domain method and the discrete image method, which combines the Gaver–Stehfest inverse Laplace transform with the Prony method to solve the initial electromagnetic fields. The precision in the iterative computations is ensured by using the transmission boundary conditions. For the response analysis, we customize geoelectric models consisting of near-borehole targets and conductive wall rocks and implement forward modeling simulations. The observed electric fields are converted into induced electromotive force responses using multicomponent observation devices. By comparing the transient electric fields and multicomponent responses under different conditions, we suggest that the multicomponent-induced electromotive force responses are related to the horizontal and vertical gradient variations of the transient electric field at different times. The characteristics of the response are determined by the varying the subsurface transient electromagnetic fields, i.e., diffusion, attenuation and distortion, under different conditions as well as the electromagnetic fields at the observation positions. The calculation and analysis scheme of the response consider the surrounding rocks and the anomalous field of the local targets. It therefore can account for the geological data better than conventional transient field response analysis of local targets.展开更多
By establishing equivalent fixed point theorem, the boundary value problems of p Laplace equations with finite time delay are studied. It’s the first time that the functional differential equation is discussed w...By establishing equivalent fixed point theorem, the boundary value problems of p Laplace equations with finite time delay are studied. It’s the first time that the functional differential equation is discussed with p Laplacian. The topological degree and fixed point theorem on cone are used to prove the existence of solution and positive solution. The conditions are all easy to check.展开更多
Generally, FD coefficients can be obtained by using Taylor series expansion (TE) or optimization methods to minimize the dispersion error. However, the TE-based FD method only achieves high modeling precision over a...Generally, FD coefficients can be obtained by using Taylor series expansion (TE) or optimization methods to minimize the dispersion error. However, the TE-based FD method only achieves high modeling precision over a limited range of wavenumbers, and produces large numerical dispersion beyond this range. The optimal FD scheme based on least squares (LS) can guarantee high precision over a larger range of wavenumbers and obtain the best optimization solution at small computational cost. We extend the LS-based optimal FD scheme from two-dimensional (2D) forward modeling to three-dimensional (3D) and develop a 3D acoustic optimal FD method with high efficiency, wide range of high accuracy and adaptability to parallel computing. Dispersion analysis and forward modeling demonstrate that the developed FD method suppresses numerical dispersion. Finally, we use the developed FD method to source wavefield extrapolation and receiver wavefield extrapolation in 3D RTM. To decrease the computation time and storage requirements, the 3D RTM is implemented by combining the efficient boundary storage with checkpointing strategies on GPU. 3D RTM imaging results suggest that the 3D optimal FD method has higher precision than conventional methods.展开更多
Fracture identification is important for the evaluation of carbonate reservoirs. However, conventional logging equipment has small depth of investigation and cannot detect rock fractures more than three meters away fr...Fracture identification is important for the evaluation of carbonate reservoirs. However, conventional logging equipment has small depth of investigation and cannot detect rock fractures more than three meters away from the borehole. Remote acoustic logging uses phase-controlled array-transmitting and long sound probes that increase the depth of investigation. The interpretation of logging data with respect to fractures is typically guided by practical experience rather than theory and is often ambiguous. We use remote acoustic reflection logging data and high-order finite-difference approximations in the forward modeling and prestack reverse-time migration to image fractures. First, we perform forward modeling of the fracture responses as a function of the fracture-borehole wall distance, aperture, and dip angle. Second, we extract the energy intensity within the imaging area to determine whether the fracture can be identified as the formation velocity is varied. Finally, we evaluate the effect of the fracture-borehole distance, fracture aperture, and dip angle on fracture identification.展开更多
In acoustic logging-while-drilling (ALWD) finite difference in time domain (FDTD) simulations, large drill collar occupies, most of the fluid-filled borehole and divides the borehole fluid into two thin fluid colu...In acoustic logging-while-drilling (ALWD) finite difference in time domain (FDTD) simulations, large drill collar occupies, most of the fluid-filled borehole and divides the borehole fluid into two thin fluid columns (radius -27 mm). Fine grids and large computational models are required to model the thin fluid region between the tool and the formation. As a result, small time step and more iterations are needed, which increases the cumulative numerical error. Furthermore, due to high impedance contrast between the drill collar and fluid in the borehole (the difference is 〉30 times), the stability and efficiency of the perfectly matched layer (PML) scheme is critical to simulate complicated wave modes accurately. In this paper, we compared four different PML implementations in a staggered grid finite difference in time domain (FDTD) in the ALWD simulation, including field-splitting PML (SPML), multiaxial PML(M- PML), non-splitting PML (NPML), and complex frequency-shifted PML (CFS-PML). The comparison indicated that NPML and CFS-PML can absorb the guided wave reflection from the computational boundaries more efficiently than SPML and M-PML. For large simulation time, SPML, M-PML, and NPML are numerically unstable. However, the stability of M-PML can be improved further to some extent. Based on the analysis, we proposed that the CFS-PML method is used in FDTD to eliminate the numerical instability and to improve the efficiency of absorption in the PML layers for LWD modeling. The optimal values of CFS-PML parameters in the LWD simulation were investigated based on thousands of 3D simulations. For typical LWD cases, the best maximum value of the quadratic damping profile was obtained using one do. The optimal parameter space for the maximum value of the linear frequency-shifted factor (a0) and the scaling factor (β0) depended on the thickness of the PML layer. For typical formations, if the PML thickness is 10 grid points, the global error can be reduced to 〈1% using the optimal PML parameters, and the error will decrease as the PML thickness increases.展开更多
In this paper, the authors establish some theorems that can ascertain the zero solutions of systemsx(n+1)=f(n,x n)(1)are uniformly stable,asymptotically stable or uniformly asymptotically stable. In the obtained theo...In this paper, the authors establish some theorems that can ascertain the zero solutions of systemsx(n+1)=f(n,x n)(1)are uniformly stable,asymptotically stable or uniformly asymptotically stable. In the obtained theorems, ΔV is not required to be always negative, where ΔV(n,x n)≡V(n+1,x(n+1)) -V(n,x(n))=V(n+1,f(n,x n))-V(n,x(n)), especially, in Theorem 1, ΔV may be even positive, which greatly improve the known results and are more convenient to use.展开更多
The finite time thermodynamic performance of a generalized Carnot cycle, in which the heat transfer between the working fluid and the heat reservoirs obeys the generalized law Q∝( Δ T) m , is studied. The optimal ...The finite time thermodynamic performance of a generalized Carnot cycle, in which the heat transfer between the working fluid and the heat reservoirs obeys the generalized law Q∝( Δ T) m , is studied. The optimal configuration and the fundamental optimal relation between power and efficiency of the cycle are derived. Some special examples are discussed. The results can provide some theoretical guidance for the design a practical engine.展开更多
The transmission and dispersive characteristics of slotline are calculated in this paper. The tail of Gaussion pulse is improved because a modified dispersive boundary condition (DBC) is adopted. It leads to a reduct...The transmission and dispersive characteristics of slotline are calculated in this paper. The tail of Gaussion pulse is improved because a modified dispersive boundary condition (DBC) is adopted. It leads to a reduction in computer memory requirements and computational time. The computational domain is greatly reduced to enable performance in personal computer. At the same time because edges of a boundary and summits are treated well, the computational results is more accurate and more collector.展开更多
Combined with current specifications and stress characteristics of concrete filled steel tubular (CFST) arch bridges, the determination principle of safe-middle-failure threestage mode is given. Accordingly, damage ...Combined with current specifications and stress characteristics of concrete filled steel tubular (CFST) arch bridges, the determination principle of safe-middle-failure threestage mode is given. Accordingly, damage probability and failure probability and the corresponding reliability indices are calculated; a direct relationship between reliability indices and three-stage working status is made. Based on the three-stage working mode, a combined FNM (finite element-neural network- Monte-Carlo simulation) method is put forward to estimate the reliability of existing bridges. According to time-dependent reliability theory, subsequent service time is divided into several stages; minimum samples required by the Monte-Carlo method are generated by random sampling; training samples are calculated by the finite element method, and the training samples are extended by the neural network; failure probability and damage probability are calculated by the Monte-Carlo method. Thus, time dependent reliability indices are obtained, and the working status is judged. A case study is investigated to estimate the reliability of an actual bridge by the FNM method. The bridge is a CFST arch bridge with an 83.6 m span and it has been in operation for 10 years. According to analysis results, in the tenth year, the example bridge is still in safe status. This conclusion is consistent with the facts, which proves the feasibility of the FNM method for estimating the reliability of existing bridges.展开更多
An approach for analyzing coupling RC interconnect delay based on "effective capacitance" is presented. We compare this new method to the traditional method,which uses Miller capacitance. The results show that the n...An approach for analyzing coupling RC interconnect delay based on "effective capacitance" is presented. We compare this new method to the traditional method,which uses Miller capacitance. The results show that the new method not only improves the accuracy but also reflects the delay dependence on rise time. The method has the same complexity as the Elmore delay model and can be used in performance-driven routing optimization.展开更多
On-chip global buses in deep sub-micron designs consume significant amounts of energy and have large propagation delays. Thus, minimizing energy dissipation and propagation delay is an important design objective. In t...On-chip global buses in deep sub-micron designs consume significant amounts of energy and have large propagation delays. Thus, minimizing energy dissipation and propagation delay is an important design objective. In this paper, we propose a new spatial and temporal encoding approach for generic on-chip global buses with repeaters that enables higher performance while reducing peak energy and average energy. The proposed encoding approach exploits the benefits of a temporal encoding circuit and spatial bus-invert coding techniques to simultaneously eliminate opposite transitions on adjacent wires and reduce the number of self-transitions and coupling-transitions. In the design process of applying encoding techniques for reduced bus delay and energy, we present a repeater insertion design methodology to determine the repeater size and inter-repeater bus length, which minimizes the total bus energy dissipation while satisfying target delay and slew-rate constraints. This methodology is employed to obtain optimal energy versus delay trade-offs under slew-rate constraints for various encoding techniques.展开更多
A hybrid method combining finite difference time domain(FDTD)with topology network was presented to treat with electromagnetic couplings and transmissions in large spaces A generalized matrix euqation expressing th...A hybrid method combining finite difference time domain(FDTD)with topology network was presented to treat with electromagnetic couplings and transmissions in large spaces A generalized matrix euqation expressing the relations among wave vectors at every port of the network nodes was give Scattering characteristics and electromagnetic distributions of every node was calculated independently using FDTD A structure of irises in a waveguide was taken as numerical examples This hybrid method has more advantages than the traditional FDTD method which includes saving calculation time,saving memory spaces and being flexible in setting up FDTD grids展开更多
文摘To save finite-difference time-domain(FDTD) computing time, several methods are proposed to convert the time domain FDTD output into frequency domain. The Pad6 approximation with Baker's algorithm and the program are introduced to simulate photonic crystal structures. For a simple pole system with frequency 160THz and quality factor of 5000, the intensity spectrum obtained by the Padé approximation from a 2^8-item sequence output is more exact than that obtained by fast Fourier transformation from a 2^20-item sequence output. The mode frequencies and quality factors are calculated at different wave vectors for the photonic crystal slab from a much shorter FDTD output than that required by the FFT method, and then the band diagrams are obatined. In addition, mode frequencies and Q-factors are calculated for photonic crystal microcavity.
基金Supported by the National Natural Science Foundation of China(61079013)the Natural Science Fund Project in Jiangsu Province(BK2011737)~~
文摘According to the failure characteristics of aircraft structure, a delay-time model is an effective method to optimize maintenance for aircraft structure. To imitate the practical situation as much as possible, imperfect inspections, thresholds and repeated intervals are concerned in delay-time models. Since the suggestion by the existing delay-time models that the inspections are implemented in an infinite time span lacks practical value, a de- lay-time model with imperfect inspection within a finite time span is proposed. In the model, the nonhomogenous Poisson process is adopted to obtain the renewal probabilities between two different successive inspections on de- fects or failures. An algorithm is applied based on the Nelder-Mead downhill simplex method to solve the model. Finally, a numerical example proves the validity and effectiveness of the model.
文摘With the entropy generation minimization (EGM) method, the thermodynamical performance optimization in a thermoelectric refrigeration system is studied. The optimization is affected by the irreversibility of heat transfer caused by finite temperature differences, the heat leak between external heat reservoirs and the internal dissipation of working fluids. EGM is taken as an objective function for the optimization. The objective function and design parameters are obtained. Optimal performance curves are presented by thermal and electronic parameters. Effects of these parameters on general and optimal performances are investigated. Results are helpful in determining optimal design conditions in real thermoelectric refrigeration systems.
基金supported by National Natural Science Foundation of China(Grant No.40874059)the National Key Science Engineering Projects of the Ninth Five Year Plan([1999]1423)
文摘Array acoustic logging plays an important role in formation evaluation. Its data is a non-linear and non-stationary signal and array acoustic logging signals have time-varying spectrum characteristics. Traditional filtering methods are inadequate. We introduce a Hilbert- Huang transform (HHT) which makes full preservation of the non-linear and non-stationary characteristics and has great advantages in the acoustic signal filtering. Using the empirical mode decomposition (EMD) method, the acoustic log waveforms can be decomposed into a finite and often small number of intrinsic mode functions (IMF). The results of applying HHT to real array acoustic logging signal filtering and de-noising are presented to illustrate the efficiency and power of this new method.
基金The National Natural Science Foundation of China(No.11001052,11171065,71171046)China Postdoctoral Science Foundation(No.2012M520964)+1 种基金the Natural Science Foundation of Jiangsu Province(No.BK20131339)the Qing Lan Project of Jiangsu Province
文摘Consider two dependent renewal risk models with constant interest rate. By using some methods in the risk theory, uniform asymptotics for finite-time ruin probability is derived in a non-compound risk model, where claim sizes are upper tail asymptotically independent random variables with dominatedly varying tails, claim inter-arrival times follow the widely lower orthant dependent structure, and the total amount of premiums is a nonnegative stochastic process. Based on the obtained result, using the method of analysis for the tail probability of random sums, a similar result in a more complex and reasonable compound risk model is also obtained, where individual claim sizes are specialized to be extended negatively dependent and accident inter-arrival times are still widely lower orthant dependent, and both the claim sizes and the claim number have dominatedly varying tails.
基金Project (BK2010392) supported by the Natural Science Foundation of Jiangsu Province of ChinaProject (3212000502) supported by the Innovation Foundation of Southeast University,China
文摘The microstructure and mechanical properties of Mg94Zn2Y4 extruded alloy containing long-period stacking ordered structures were systematically investigated by SEM and TEM analyses. The results show that the 18R-LPSO structure and α-Mg phase are observed in cast Mg94Zn2Y4 alloy. After extrusion, the LPSO structures are delaminated and Mg-slices with width of 50-200 nm are generated. By ageing at 498 K for 36 h, the ageing peak is attained andβ′phase is precipitated. Due to this novel precipitation, the microhardness ofα-Mg matrix increases apparently from HV108.9 to HV129.7. While the microhardness for LPSO structure is stabilized at about HV145. TEM observations and SAED patterns indicate that the β′ phase has unique orientation relationships betweenα-Mg and LPSO structures, the direction in the close-packed planes ofβ′precipitates perpendicular to that ofα-Mg and LPSO structures. The ultimate tensile strength for the peak-aged alloy achieves 410.7 MPa and the significant strength originates from the coexistence ofβ′precipitates and 18R-LPSO structures.
基金The Scientific Research Innovation Project for College Graduates in Jiangsu Province(No.CX10B_071Z)the National High Technology Research and Development Program of China(863 Program)(No.2011AA110304)
文摘Research about the auto commuter's pre-trip route choice behavior ignores the combined influence of the real-time information and all respondents' historical information in the existing documents.To overcome this shortcoming,an approach to describing the pre-trip route choice behavior with the incorporation of the real-time and historical information is proposed.Two types of real-time information are investigated,which are quantitative information and prescriptive information.By using the bounded rationality theory,the influence of historical information on the real-time information reference process is examined first.Estimation results show that the historical information has a significant influence on the quantitative information reference process,but not on the prescriptive information reference process.Then the route choice behavior is modeled.A comparison is also made among three route choice models,one of which does not incorporate the real-time information reference process,while the others do.Estimation results show that the route choice behavior is better described with the consideration of the reference process of both quantitative and prescriptive information.
基金supported by the Young Scientists Fund of the National Natural Science Foundation of China(No.41304082)the China Postdoctoral Science Foundation(No.2016M590731)+2 种基金the Young Scientists Fund of the Natural Science Foundation of Hebei Province(No.D2014403011)the Program for Young Excellent Talents of Higher Education Institutions of Hebei Province(No.BJ2016046)the Geological survey project of China Geological Survey(No.1212011121197)
文摘We calculate the multicomponent responses of surface-hole transient electromagnetic method. The methods and models are unsuitable as geoelectric models of conductive surrounding rocks because they are based on regular local targets. We also propose a calculation and analysis scheme based on numerical simulations of the subsurface transient electromagnetic fields. In the modeling of the electromagnetic fields, the forward modeling simulations are performed by using the finite-difference time-domain method and the discrete image method, which combines the Gaver–Stehfest inverse Laplace transform with the Prony method to solve the initial electromagnetic fields. The precision in the iterative computations is ensured by using the transmission boundary conditions. For the response analysis, we customize geoelectric models consisting of near-borehole targets and conductive wall rocks and implement forward modeling simulations. The observed electric fields are converted into induced electromotive force responses using multicomponent observation devices. By comparing the transient electric fields and multicomponent responses under different conditions, we suggest that the multicomponent-induced electromotive force responses are related to the horizontal and vertical gradient variations of the transient electric field at different times. The characteristics of the response are determined by the varying the subsurface transient electromagnetic fields, i.e., diffusion, attenuation and distortion, under different conditions as well as the electromagnetic fields at the observation positions. The calculation and analysis scheme of the response consider the surrounding rocks and the anomalous field of the local targets. It therefore can account for the geological data better than conventional transient field response analysis of local targets.
文摘By establishing equivalent fixed point theorem, the boundary value problems of p Laplace equations with finite time delay are studied. It’s the first time that the functional differential equation is discussed with p Laplacian. The topological degree and fixed point theorem on cone are used to prove the existence of solution and positive solution. The conditions are all easy to check.
基金supported by the National Natural Science Foundation of China(No.41474110)Shell Ph.D. Scholarship to support excellence in geophysical research
文摘Generally, FD coefficients can be obtained by using Taylor series expansion (TE) or optimization methods to minimize the dispersion error. However, the TE-based FD method only achieves high modeling precision over a limited range of wavenumbers, and produces large numerical dispersion beyond this range. The optimal FD scheme based on least squares (LS) can guarantee high precision over a larger range of wavenumbers and obtain the best optimization solution at small computational cost. We extend the LS-based optimal FD scheme from two-dimensional (2D) forward modeling to three-dimensional (3D) and develop a 3D acoustic optimal FD method with high efficiency, wide range of high accuracy and adaptability to parallel computing. Dispersion analysis and forward modeling demonstrate that the developed FD method suppresses numerical dispersion. Finally, we use the developed FD method to source wavefield extrapolation and receiver wavefield extrapolation in 3D RTM. To decrease the computation time and storage requirements, the 3D RTM is implemented by combining the efficient boundary storage with checkpointing strategies on GPU. 3D RTM imaging results suggest that the 3D optimal FD method has higher precision than conventional methods.
基金supported by National Petroleum Major Project(Grant No.2011ZX05020-008)
文摘Fracture identification is important for the evaluation of carbonate reservoirs. However, conventional logging equipment has small depth of investigation and cannot detect rock fractures more than three meters away from the borehole. Remote acoustic logging uses phase-controlled array-transmitting and long sound probes that increase the depth of investigation. The interpretation of logging data with respect to fractures is typically guided by practical experience rather than theory and is often ambiguous. We use remote acoustic reflection logging data and high-order finite-difference approximations in the forward modeling and prestack reverse-time migration to image fractures. First, we perform forward modeling of the fracture responses as a function of the fracture-borehole wall distance, aperture, and dip angle. Second, we extract the energy intensity within the imaging area to determine whether the fracture can be identified as the formation velocity is varied. Finally, we evaluate the effect of the fracture-borehole distance, fracture aperture, and dip angle on fracture identification.
基金supported by NSFC(No.41174118)one of the major state S&T special projects(No.2008ZX05020-004)+1 种基金a Postdoctoral Fellowship of China(No.2013M530106)China Scholarship Council(No.2010644006)
文摘In acoustic logging-while-drilling (ALWD) finite difference in time domain (FDTD) simulations, large drill collar occupies, most of the fluid-filled borehole and divides the borehole fluid into two thin fluid columns (radius -27 mm). Fine grids and large computational models are required to model the thin fluid region between the tool and the formation. As a result, small time step and more iterations are needed, which increases the cumulative numerical error. Furthermore, due to high impedance contrast between the drill collar and fluid in the borehole (the difference is 〉30 times), the stability and efficiency of the perfectly matched layer (PML) scheme is critical to simulate complicated wave modes accurately. In this paper, we compared four different PML implementations in a staggered grid finite difference in time domain (FDTD) in the ALWD simulation, including field-splitting PML (SPML), multiaxial PML(M- PML), non-splitting PML (NPML), and complex frequency-shifted PML (CFS-PML). The comparison indicated that NPML and CFS-PML can absorb the guided wave reflection from the computational boundaries more efficiently than SPML and M-PML. For large simulation time, SPML, M-PML, and NPML are numerically unstable. However, the stability of M-PML can be improved further to some extent. Based on the analysis, we proposed that the CFS-PML method is used in FDTD to eliminate the numerical instability and to improve the efficiency of absorption in the PML layers for LWD modeling. The optimal values of CFS-PML parameters in the LWD simulation were investigated based on thousands of 3D simulations. For typical LWD cases, the best maximum value of the quadratic damping profile was obtained using one do. The optimal parameter space for the maximum value of the linear frequency-shifted factor (a0) and the scaling factor (β0) depended on the thickness of the PML layer. For typical formations, if the PML thickness is 10 grid points, the global error can be reduced to 〈1% using the optimal PML parameters, and the error will decrease as the PML thickness increases.
文摘In this paper, the authors establish some theorems that can ascertain the zero solutions of systemsx(n+1)=f(n,x n)(1)are uniformly stable,asymptotically stable or uniformly asymptotically stable. In the obtained theorems, ΔV is not required to be always negative, where ΔV(n,x n)≡V(n+1,x(n+1)) -V(n,x(n))=V(n+1,f(n,x n))-V(n,x(n)), especially, in Theorem 1, ΔV may be even positive, which greatly improve the known results and are more convenient to use.
文摘The finite time thermodynamic performance of a generalized Carnot cycle, in which the heat transfer between the working fluid and the heat reservoirs obeys the generalized law Q∝( Δ T) m , is studied. The optimal configuration and the fundamental optimal relation between power and efficiency of the cycle are derived. Some special examples are discussed. The results can provide some theoretical guidance for the design a practical engine.
文摘The transmission and dispersive characteristics of slotline are calculated in this paper. The tail of Gaussion pulse is improved because a modified dispersive boundary condition (DBC) is adopted. It leads to a reduction in computer memory requirements and computational time. The computational domain is greatly reduced to enable performance in personal computer. At the same time because edges of a boundary and summits are treated well, the computational results is more accurate and more collector.
基金The National Natural Science Foundation of China(No.10672060)
文摘Combined with current specifications and stress characteristics of concrete filled steel tubular (CFST) arch bridges, the determination principle of safe-middle-failure threestage mode is given. Accordingly, damage probability and failure probability and the corresponding reliability indices are calculated; a direct relationship between reliability indices and three-stage working status is made. Based on the three-stage working mode, a combined FNM (finite element-neural network- Monte-Carlo simulation) method is put forward to estimate the reliability of existing bridges. According to time-dependent reliability theory, subsequent service time is divided into several stages; minimum samples required by the Monte-Carlo method are generated by random sampling; training samples are calculated by the finite element method, and the training samples are extended by the neural network; failure probability and damage probability are calculated by the Monte-Carlo method. Thus, time dependent reliability indices are obtained, and the working status is judged. A case study is investigated to estimate the reliability of an actual bridge by the FNM method. The bridge is a CFST arch bridge with an 83.6 m span and it has been in operation for 10 years. According to analysis results, in the tenth year, the example bridge is still in safe status. This conclusion is consistent with the facts, which proves the feasibility of the FNM method for estimating the reliability of existing bridges.
文摘An approach for analyzing coupling RC interconnect delay based on "effective capacitance" is presented. We compare this new method to the traditional method,which uses Miller capacitance. The results show that the new method not only improves the accuracy but also reflects the delay dependence on rise time. The method has the same complexity as the Elmore delay model and can be used in performance-driven routing optimization.
文摘On-chip global buses in deep sub-micron designs consume significant amounts of energy and have large propagation delays. Thus, minimizing energy dissipation and propagation delay is an important design objective. In this paper, we propose a new spatial and temporal encoding approach for generic on-chip global buses with repeaters that enables higher performance while reducing peak energy and average energy. The proposed encoding approach exploits the benefits of a temporal encoding circuit and spatial bus-invert coding techniques to simultaneously eliminate opposite transitions on adjacent wires and reduce the number of self-transitions and coupling-transitions. In the design process of applying encoding techniques for reduced bus delay and energy, we present a repeater insertion design methodology to determine the repeater size and inter-repeater bus length, which minimizes the total bus energy dissipation while satisfying target delay and slew-rate constraints. This methodology is employed to obtain optimal energy versus delay trade-offs under slew-rate constraints for various encoding techniques.
文摘A hybrid method combining finite difference time domain(FDTD)with topology network was presented to treat with electromagnetic couplings and transmissions in large spaces A generalized matrix euqation expressing the relations among wave vectors at every port of the network nodes was give Scattering characteristics and electromagnetic distributions of every node was calculated independently using FDTD A structure of irises in a waveguide was taken as numerical examples This hybrid method has more advantages than the traditional FDTD method which includes saving calculation time,saving memory spaces and being flexible in setting up FDTD grids