We investigate synchronization in an array network of nearest-neighbor coupled chaotic oscillators. By using of the Lyapunov stability theory and matrix theory, a criterion for stability of complete synchronization is...We investigate synchronization in an array network of nearest-neighbor coupled chaotic oscillators. By using of the Lyapunov stability theory and matrix theory, a criterion for stability of complete synchronization is deduced. Meanwhile, an estimate of the critical coupling strength is obtained to ensure achieving chaos synchronization. As an example application, a model of coupled Chua's circuits with linearly bidirectional coupling is studied to verify the validity of the criterion.展开更多
Let An(R) be the set of symmetric matrices over Z/p^kZ with order n, where n 〉 2, p is a prime, p 〉 2 and p≡1(mod4), k 〉 1. By determining the normal form of n by n symmetric matrices over Z/p^kZ, we compute t...Let An(R) be the set of symmetric matrices over Z/p^kZ with order n, where n 〉 2, p is a prime, p 〉 2 and p≡1(mod4), k 〉 1. By determining the normal form of n by n symmetric matrices over Z/p^kZ, we compute the number of the orbits of An(R) and then compute the order of the orthogonal group determined by the special symmetric matrix. Finally we get the number of the symmetric matrices which are in the same orbit with the special symmetric matrix.展开更多
基金supported by National Natural Science Foundation under Grant Nos.10872014 and 10702023
文摘We investigate synchronization in an array network of nearest-neighbor coupled chaotic oscillators. By using of the Lyapunov stability theory and matrix theory, a criterion for stability of complete synchronization is deduced. Meanwhile, an estimate of the critical coupling strength is obtained to ensure achieving chaos synchronization. As an example application, a model of coupled Chua's circuits with linearly bidirectional coupling is studied to verify the validity of the criterion.
基金the Key Project of Chinese Ministry of Education (03060)
文摘Let An(R) be the set of symmetric matrices over Z/p^kZ with order n, where n 〉 2, p is a prime, p 〉 2 and p≡1(mod4), k 〉 1. By determining the normal form of n by n symmetric matrices over Z/p^kZ, we compute the number of the orbits of An(R) and then compute the order of the orthogonal group determined by the special symmetric matrix. Finally we get the number of the symmetric matrices which are in the same orbit with the special symmetric matrix.