Fatigue strength,crack initiation and propagation behavior of rolled AZ31B magnesium alloy plate were investigated. Axial tension-compression fatigue tests were carried out with cylindrical smooth specimens.Two types ...Fatigue strength,crack initiation and propagation behavior of rolled AZ31B magnesium alloy plate were investigated. Axial tension-compression fatigue tests were carried out with cylindrical smooth specimens.Two types of specimens were machined with the loading axis parallel(L-specimen)and perpendicular(T-specimen)to rolling direction.Monotonic compressive 0.2%proof stress,tensile strength and tensile elongation were similar for both specimens.On the other hand,monotonic tensile 0.2%proof stress of the L-specimen was slightly higher than that of the T-specimen.Moreover,monotonic compressive 0.2%proof stresses were lower than tensile ones for both specimens.The fatigue strengths of 107cycles of the L-and T-specimens were 95 and 85 MPa,respectively. Compared with the monotonic compressive 0.2%proof stresses,the fatigue strengths were higher for both specimens.In other words, the fatigue crack did not initiate and propagate even though deformation twins were formed in compressive stress under the cyclic tension-compression loading.The fatigue crack initiated at early stage of the fatigue life in low cycle regime regardless of specimen direction.The crack growth rate of the L-specimen was slightly lower than of the T-specimen.Consequently,the fatigue lives of the L-specimen were longer than those of the T-specimen in low cycle regime.展开更多
Common tools based on landmarks in medical image elastic registration are Thin Plate Spline (TPS) and Compact Support Radial Basis Function (CSRBF). TPS forces the corresponding landmarks to exactly match each other a...Common tools based on landmarks in medical image elastic registration are Thin Plate Spline (TPS) and Compact Support Radial Basis Function (CSRBF). TPS forces the corresponding landmarks to exactly match each other and minimizes the bending energy of the whole image. However, in real application, such scheme would deform the image globally when deformation is only local. CSRBF needs manually determine the support size, although its deformation is limited local. Therefore, to limit the effect of the deformation, new Compact Support Thin Plate Spline algorithm (CSTPS) is approached, analyzed and applied. Such new approach gains optimal mutual information, which shows its registration result satisfactory. The experiments also show it can apply in both local and global elastic registration.展开更多
Explaining fundamentals of application of cable bolting for a thick seam depillaring,this paper summarizes the results of field studies conducted during adoption of this approach in more than fifteen panels of Madhusu...Explaining fundamentals of application of cable bolting for a thick seam depillaring,this paper summarizes the results of field studies conducted during adoption of this approach in more than fifteen panels of Madhusudanpur 7 pit and incline mine.Nearly 7.0 m thick Kajora top coal seam of this mine is developed on pillars along the floor horizon to an average height of 3.0 m,leaving a coal band of around 4.0 m along the roof.Analysis of procured core samples showed that roof strata are easily caveable with a caveability index value of around 2000 only.Easily caveable overlying strata and shallow depth of cover alleviated most of the expected strata mechanics problems of the thick seam mining.However,extraction of total thickness at shallow cover caused differential-subsidence and cracks on the surface.These manifestations were immediately tackled to avoid creation of a breathing path for spontaneous heating in the extracted area.展开更多
The tension property of aluminum-alloy sheet with different microstructures is measured, and the surface and tension fracture morphology of tension sample with and without orange peel are observed by using scanning el...The tension property of aluminum-alloy sheet with different microstructures is measured, and the surface and tension fracture morphology of tension sample with and without orange peel are observed by using scanning electron microscope (SEM). Surface roughness and nano hardness of tension sample are measured. The results show that the average elongation of the samples with orange peel is lower than that without orange peel ; especially the r value of per- pendicular to the rolling direction is much lower than that without orange peel. The tension surface of the orange peel samples is very rough; various parameters of surface roughness are higher. Under the observation of SEM, a wider slid- ing band with a micro crack on the surface of orange peel sample can be found. The various parameters of surface rough- ness without orange peel sample are near to zero, the sliding band is narrow and without micro cracks. The dimple width in tensile fracture of orange peel sample is larger than that without orange peel sample, but shear lip is narrower. The nano hardness testing results show that samples with orange peel behave high elastic modulus, high hardness, and high maximum load, but low plastic deformation depth. These mentioned features can completely describe surface and frac- ture morphology of tension samt31es with oranze peel.展开更多
In order to study morphological diversity of codling moth, Cydia pomonella (L.) using thin-plate spline analysis, nine geographical populations from four north western provinces of Iran namely East Azarbayjan, West ...In order to study morphological diversity of codling moth, Cydia pomonella (L.) using thin-plate spline analysis, nine geographical populations from four north western provinces of Iran namely East Azarbayjan, West Azarbayjan, Ardebil and Zandjan were collected during 2003 and 2004. 575 and 564 images were prepared from fore and hind wings, respectively. Then 15 and 11 landmarks were determined from fore and hind wings, respectively. With transforming of landmark's two dimensional coordinate data into partial warp scores, 26 and 18 scores were generated for fore and hind wings, respectively. Cluster analysis based on wing shape variables using Ward's algorithm assigned nine geographical populations into two groups. The pattern of grouping based on fore and hind wings was different in both sexes. Principal component analysis revealed discrimination between geographic populations and confirmed the result of cluster analysis. Among environmental parameters, wind speed showed the highest correlation with wing shape variables. Non significant correlation was observed between geographic and morphological distance matrices as revealed by Mantel test.展开更多
To achieve fine segmentation of complex natural images, people often resort to an interactive segmentation paradigm, since fully automatic methods often fail to obtain a result consistent with the ground truth. Howeve...To achieve fine segmentation of complex natural images, people often resort to an interactive segmentation paradigm, since fully automatic methods often fail to obtain a result consistent with the ground truth. However, when the foreground and background share some similar areas in color, the fine segmentation result of conventional interactive methods usually relies on the increase o f manual labels. This paper presents a novel interactive image segmentation method via a regression-based ensemble model with semi-supervised learning. The task is formulated as a non-linear problem integrating two complementary spline regressors and strengthening the robustness of each regressor via semi-supervised learning. First, two spline regressors with a complementary nature are constructed based on multivariate adaptive regression splines (MARS) and smooth thin plate spline regression (TPSR). Then, a regressor boosting method based on a clustering hypothesis and semi-supervised learning is proposed to assist the training of MARS and TPSR by using the region segmentation information contained in unlabeled pixels. Next, a support vector regression (SVR) based decision fusion model is adopted to integrate the results of MARS and TPSR. Finally, the GraphCut is introduced and combined with the SVR ensemble results to achieve image segmentation. Extensive experimental results on benchmark datasets of BSDS500 and Pascal VOC have demonstrated the effectiveness of our method, and the com- parison with experiment results has validated that the proposed method is comparable with the state-of-the-art methods for in- teractive natural image segmentation.展开更多
This paper presents a novel parallel implementation technology for wave-based structural health monitoring (SHM) in laminated composite plates. The wavelet-based B-spline wavelet on he interval (BSWI) element is cons...This paper presents a novel parallel implementation technology for wave-based structural health monitoring (SHM) in laminated composite plates. The wavelet-based B-spline wavelet on he interval (BSWI) element is constructed according to Hamilton’s principle, and the element by element algorithm is parallelly executed on graphics processing unit (GPU) using compute unified device architecture (CUDA) to get the responses in full wave field accurately. By means of the Fourier spectral analysis method,the Mindlin plate theory is selected for wave modeling of laminated composite plates while the Kirchhoff plate theory predicts unreasonably phase and group velocities. Numerical examples involving wave propagation in laminated composite plates without and with crack are performed and discussed in detail. The parallel implementation on GPU is accelerated 146 times comparing with the same wave motion problem executed on central processing unit (CPU). The validity and accuracy of the proposed parallel implementation are also demonstrated by comparing with conventional finite element method (FEM) and the computation time has been reduced from hours to minutes. The damage size and location have been successfully determined according to wave propagation results based on delay-and-sum (DAS). The results show that the proposed parallel implementation of wavelet finite element method (WFEM) is very appropriate and efficient for wave-based SHM in laminated composite plates.展开更多
This paper presents an approach for recognizing both isolated and intersecting geometric features of freeform surface models of parts,for the purpose of automating the process planning of sheet metal forming.The devel...This paper presents an approach for recognizing both isolated and intersecting geometric features of freeform surface models of parts,for the purpose of automating the process planning of sheet metal forming.The developed methodology has three major steps:subdivision of B-spline surfaces,detection of protrusions and depressions,and recognition of geometric features for sheet metal forming domain.The input geometry data format of the part is based on an IGES CAD surface model represented in the form of trimmed B-spline surfaces.Each surface is classified or subdivided into different curvature regions with the aid of curvature property surfaces obtained by using symbolic computation of B-spline surfaces.Those regions satisfying a particular geometry and topology relation are recognized as protrusion and depression(DP) shapes.The DP shapes are then classified into different geometric features using a rule-based approach.A verified feasibility study of the developed method is also presented.展开更多
文摘Fatigue strength,crack initiation and propagation behavior of rolled AZ31B magnesium alloy plate were investigated. Axial tension-compression fatigue tests were carried out with cylindrical smooth specimens.Two types of specimens were machined with the loading axis parallel(L-specimen)and perpendicular(T-specimen)to rolling direction.Monotonic compressive 0.2%proof stress,tensile strength and tensile elongation were similar for both specimens.On the other hand,monotonic tensile 0.2%proof stress of the L-specimen was slightly higher than that of the T-specimen.Moreover,monotonic compressive 0.2%proof stresses were lower than tensile ones for both specimens.The fatigue strengths of 107cycles of the L-and T-specimens were 95 and 85 MPa,respectively. Compared with the monotonic compressive 0.2%proof stresses,the fatigue strengths were higher for both specimens.In other words, the fatigue crack did not initiate and propagate even though deformation twins were formed in compressive stress under the cyclic tension-compression loading.The fatigue crack initiated at early stage of the fatigue life in low cycle regime regardless of specimen direction.The crack growth rate of the L-specimen was slightly lower than of the T-specimen.Consequently,the fatigue lives of the L-specimen were longer than those of the T-specimen in low cycle regime.
基金the National Natural Science Foundation of China (No.60572101) the Natural Science Foundation of Guangdong Province (No.31789).
文摘Common tools based on landmarks in medical image elastic registration are Thin Plate Spline (TPS) and Compact Support Radial Basis Function (CSRBF). TPS forces the corresponding landmarks to exactly match each other and minimizes the bending energy of the whole image. However, in real application, such scheme would deform the image globally when deformation is only local. CSRBF needs manually determine the support size, although its deformation is limited local. Therefore, to limit the effect of the deformation, new Compact Support Thin Plate Spline algorithm (CSTPS) is approached, analyzed and applied. Such new approach gains optimal mutual information, which shows its registration result satisfactory. The experiments also show it can apply in both local and global elastic registration.
基金sponsored by the general manager,Kajora Area of Eastern Coalfield Limited(ECL).Co-operation of general manager of the Area,project officer,Madhusudanpur 7 Pit and Incline Colliery,manager and safety officer,Madhusudanpur 7 Pit and Incline Colliery in conducting this study is thankfully acknowledged
文摘Explaining fundamentals of application of cable bolting for a thick seam depillaring,this paper summarizes the results of field studies conducted during adoption of this approach in more than fifteen panels of Madhusudanpur 7 pit and incline mine.Nearly 7.0 m thick Kajora top coal seam of this mine is developed on pillars along the floor horizon to an average height of 3.0 m,leaving a coal band of around 4.0 m along the roof.Analysis of procured core samples showed that roof strata are easily caveable with a caveability index value of around 2000 only.Easily caveable overlying strata and shallow depth of cover alleviated most of the expected strata mechanics problems of the thick seam mining.However,extraction of total thickness at shallow cover caused differential-subsidence and cracks on the surface.These manifestations were immediately tackled to avoid creation of a breathing path for spontaneous heating in the extracted area.
文摘The tension property of aluminum-alloy sheet with different microstructures is measured, and the surface and tension fracture morphology of tension sample with and without orange peel are observed by using scanning electron microscope (SEM). Surface roughness and nano hardness of tension sample are measured. The results show that the average elongation of the samples with orange peel is lower than that without orange peel ; especially the r value of per- pendicular to the rolling direction is much lower than that without orange peel. The tension surface of the orange peel samples is very rough; various parameters of surface roughness are higher. Under the observation of SEM, a wider slid- ing band with a micro crack on the surface of orange peel sample can be found. The various parameters of surface rough- ness without orange peel sample are near to zero, the sliding band is narrow and without micro cracks. The dimple width in tensile fracture of orange peel sample is larger than that without orange peel sample, but shear lip is narrower. The nano hardness testing results show that samples with orange peel behave high elastic modulus, high hardness, and high maximum load, but low plastic deformation depth. These mentioned features can completely describe surface and frac- ture morphology of tension samt31es with oranze peel.
文摘In order to study morphological diversity of codling moth, Cydia pomonella (L.) using thin-plate spline analysis, nine geographical populations from four north western provinces of Iran namely East Azarbayjan, West Azarbayjan, Ardebil and Zandjan were collected during 2003 and 2004. 575 and 564 images were prepared from fore and hind wings, respectively. Then 15 and 11 landmarks were determined from fore and hind wings, respectively. With transforming of landmark's two dimensional coordinate data into partial warp scores, 26 and 18 scores were generated for fore and hind wings, respectively. Cluster analysis based on wing shape variables using Ward's algorithm assigned nine geographical populations into two groups. The pattern of grouping based on fore and hind wings was different in both sexes. Principal component analysis revealed discrimination between geographic populations and confirmed the result of cluster analysis. Among environmental parameters, wind speed showed the highest correlation with wing shape variables. Non significant correlation was observed between geographic and morphological distance matrices as revealed by Mantel test.
基金the National Natural Science Foundation of China (Nos. 61071176, 61171192, and 61272337) and the Doctoral
文摘To achieve fine segmentation of complex natural images, people often resort to an interactive segmentation paradigm, since fully automatic methods often fail to obtain a result consistent with the ground truth. However, when the foreground and background share some similar areas in color, the fine segmentation result of conventional interactive methods usually relies on the increase o f manual labels. This paper presents a novel interactive image segmentation method via a regression-based ensemble model with semi-supervised learning. The task is formulated as a non-linear problem integrating two complementary spline regressors and strengthening the robustness of each regressor via semi-supervised learning. First, two spline regressors with a complementary nature are constructed based on multivariate adaptive regression splines (MARS) and smooth thin plate spline regression (TPSR). Then, a regressor boosting method based on a clustering hypothesis and semi-supervised learning is proposed to assist the training of MARS and TPSR by using the region segmentation information contained in unlabeled pixels. Next, a support vector regression (SVR) based decision fusion model is adopted to integrate the results of MARS and TPSR. Finally, the GraphCut is introduced and combined with the SVR ensemble results to achieve image segmentation. Extensive experimental results on benchmark datasets of BSDS500 and Pascal VOC have demonstrated the effectiveness of our method, and the com- parison with experiment results has validated that the proposed method is comparable with the state-of-the-art methods for in- teractive natural image segmentation.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51421004 & 51405369)the National Key Basic Research Program of China (Grant No. 2015CB057400)+1 种基金the China Postdoctoral Science Foundation (Grant No. 2014M560766)the China Scholarship Council,and the Fundamental Research Funds for the Central Universities(Grant No. xjj2014107)
文摘This paper presents a novel parallel implementation technology for wave-based structural health monitoring (SHM) in laminated composite plates. The wavelet-based B-spline wavelet on he interval (BSWI) element is constructed according to Hamilton’s principle, and the element by element algorithm is parallelly executed on graphics processing unit (GPU) using compute unified device architecture (CUDA) to get the responses in full wave field accurately. By means of the Fourier spectral analysis method,the Mindlin plate theory is selected for wave modeling of laminated composite plates while the Kirchhoff plate theory predicts unreasonably phase and group velocities. Numerical examples involving wave propagation in laminated composite plates without and with crack are performed and discussed in detail. The parallel implementation on GPU is accelerated 146 times comparing with the same wave motion problem executed on central processing unit (CPU). The validity and accuracy of the proposed parallel implementation are also demonstrated by comparing with conventional finite element method (FEM) and the computation time has been reduced from hours to minutes. The damage size and location have been successfully determined according to wave propagation results based on delay-and-sum (DAS). The results show that the proposed parallel implementation of wavelet finite element method (WFEM) is very appropriate and efficient for wave-based SHM in laminated composite plates.
文摘This paper presents an approach for recognizing both isolated and intersecting geometric features of freeform surface models of parts,for the purpose of automating the process planning of sheet metal forming.The developed methodology has three major steps:subdivision of B-spline surfaces,detection of protrusions and depressions,and recognition of geometric features for sheet metal forming domain.The input geometry data format of the part is based on an IGES CAD surface model represented in the form of trimmed B-spline surfaces.Each surface is classified or subdivided into different curvature regions with the aid of curvature property surfaces obtained by using symbolic computation of B-spline surfaces.Those regions satisfying a particular geometry and topology relation are recognized as protrusion and depression(DP) shapes.The DP shapes are then classified into different geometric features using a rule-based approach.A verified feasibility study of the developed method is also presented.