This paper deals with the problem of accelerometer error estimation and compensation for a three-axis gyro-stabilized camera mount. In a dynamic environment, the aircraft motion acceleration affects the accelerome :e...This paper deals with the problem of accelerometer error estimation and compensation for a three-axis gyro-stabilized camera mount. In a dynamic environment, the aircraft motion acceleration affects the accelerome :er output and causes a degradation of attitude steady accuracy. In order to improve control accuracy, this paper proposes a proportional multiple-integral observer- based control strategy to estimate and compensate the accelerometer error. The basic idea of this paper is to approximate the error property by using a q-order polynomial function and extend the error and its derivatives as augmented states. Then a proportional multiple-integral observer is developed to estimate the error, with which the relationship between the error and the imbalance torque is formulated. The estimated value is compared to an angle threshold, the result of which is used to compen- sate the accelerometer output. Through static and vehicle-mounted experiments, it is demonstrated that compared with the tra- ditional method, the proposed method can improve the attitude steady accuracy effectively.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.61174121,61333005 and 61121003)the Ph.D Programs Foundations of the Ministry of Education China
文摘This paper deals with the problem of accelerometer error estimation and compensation for a three-axis gyro-stabilized camera mount. In a dynamic environment, the aircraft motion acceleration affects the accelerome :er output and causes a degradation of attitude steady accuracy. In order to improve control accuracy, this paper proposes a proportional multiple-integral observer- based control strategy to estimate and compensate the accelerometer error. The basic idea of this paper is to approximate the error property by using a q-order polynomial function and extend the error and its derivatives as augmented states. Then a proportional multiple-integral observer is developed to estimate the error, with which the relationship between the error and the imbalance torque is formulated. The estimated value is compared to an angle threshold, the result of which is used to compen- sate the accelerometer output. Through static and vehicle-mounted experiments, it is demonstrated that compared with the tra- ditional method, the proposed method can improve the attitude steady accuracy effectively.