Constant-current anodization of pure aluminum was carried out in non-corrosive capacitor working electrolytes to study the formation mechanism of nanopores in the anodic oxide films.Through comparative experiments,nan...Constant-current anodization of pure aluminum was carried out in non-corrosive capacitor working electrolytes to study the formation mechanism of nanopores in the anodic oxide films.Through comparative experiments,nanopores are found in the anodic films formed in the electrolytes after high-temperature storage(HTS)at 130°C for 240 h.A comparison of the voltage-time curves suggests that the formation of nanopores results from the decrease in formation efficiency of anodic oxide films rather than the corrosion of the electrolytes.FT-IR and UV spectra analysis shows that carboxylate and ethylene glycol in electrolytes can easily react by esterification at high temperatures.Combining the electronic current theory and oxygen bubble mold effect,the change in electrolyte composition could increase the electronic current in the anodizing process.The electronic current decreases the formation efficiency of anodic oxide films,and oxygen bubbles accompanying electronic current lead to the formation of nanopores in the dense films.The continuous electronic current and oxygen bubbles are the prerequisites for the formation of porous anodic oxides rather than the traditional field-assisted dissolution model.展开更多
In order to investigate the atmospheric oxidation processes and the formation of secondary organic aerosol (SOA), an indoor environmental reaction smog chamber are constructed and characterized. The system consists ...In order to investigate the atmospheric oxidation processes and the formation of secondary organic aerosol (SOA), an indoor environmental reaction smog chamber are constructed and characterized. The system consists of the collapsible ~830 L FEP Teflon film main reactor, in which the atmospheric chemical reactions take place and the formation of SOA occurs under the simulated atmospheric conditions, and the diverse on-line gas- and particle-phase instrumentation, such as the proton transfer reaction mass spectrometer, the synchrotron radiation photoionization mass spectrometer, the aerosol laser time-of-flight mass spectrometer, and other traditional commercial instruments. The initial characterization experiments are described, concerning the temperature and ultraviolet light intensity, the reactivity of the pure air, the wall loss rates of gaseous compounds and particulate matter. And the initial evaluation experiments for SOA yields from the ozonolysis of α-pinene and for mass spectra of the products resulting from the photooxidation of OH initiated isoprene are also presented, which indicate the applicability of this facility on the studies of gas-phase chemical mechanisms as well as the formation of SOA expected in the atmosphere.展开更多
Platinum/cerium-zirconium-sulfate(Pt/Ce-Zr-SO_4^(2-)) catalysts were prepared by wetness impregnation.Catalytic activities were evaluated from the combustion of propene and CO.Sulfate(SO_4^(2-))addition improv...Platinum/cerium-zirconium-sulfate(Pt/Ce-Zr-SO_4^(2-)) catalysts were prepared by wetness impregnation.Catalytic activities were evaluated from the combustion of propene and CO.Sulfate(SO_4^(2-))addition improved the catalytic activity significantly.When using Pt/Ce-Zr-SO_4^(2-) with 10 wt%SO_4^(2-),the temperature for 90%conversion of propene and CO decreased by 75℃ compared with Pt/Ce-Zr.The conversion exceeded 95%at 240℃ even after 0.02%sulfur dioxide poisoning for 20 h.Temperature-programmed desorption of CO and X-ray photoelectron spectroscopy analyses revealed an improvement in Pt dispersion onto the Ce-Zr-SO_4^(2-) support,and the increased number of Pt particles built up more Pt^(-)-(SO_4^(2-))^(-) couples,which resulted in excellent activity.The increased total acidity and new Bronsted acid sites on the surface provided the Pt/Ce-Zr-SO_4^(2-) with good sulfur resistance.展开更多
The interaction of mineral oxides (α-A12O3, MgO, Fe2O3, and SiO2) with hydrogen peroxide was investigated using the Knudsen cell reactor. The initial reactive uptake coefficients for tile commercially available pow...The interaction of mineral oxides (α-A12O3, MgO, Fe2O3, and SiO2) with hydrogen peroxide was investigated using the Knudsen cell reactor. The initial reactive uptake coefficients for tile commercially available powders are measured as (1.00±0.11)×10-4 for α-A1203, (1.66±0.23)×10-4 for MgO, (9.70±1.95)×10-5 for Fe203, and (5.22±0.9)×10-5 for SiO2. These metal oxide powders exhibit some catalytic behavior toward the decomposition of hydrogen peroxide excluding SiO2. H2O2 can be destroyed on Fe2O3 surface and O2 is formed. The experimental results suggest that the heterogeneous loss on mineral surface can represent an important sink of hydrogen peroxide.展开更多
Next to CO2, methane (CH4) is the second important contributor to global warming in the atmosphere and global atmospheric CH4 budget depends on both CH4 sources and sinks. Unsaturated soil is known as a unique sink fo...Next to CO2, methane (CH4) is the second important contributor to global warming in the atmosphere and global atmospheric CH4 budget depends on both CH4 sources and sinks. Unsaturated soil is known as a unique sink for atmospheric CH4 in terrestrial ecosystem. Many comparison studies proved that forest soil had the biggest capacity of oxidizing atmospheric CH4 in various unsaturated soils. However, up to now, there is not an overall review in the aspect of atmospheric CH4 oxidation (consumption) in forest soil. This paper analyzed advances of studies on the mechanism of atmospheric CH4 oxidation, and re-lated natural factors (Soil physical and chemical characters, temperature and moisture, ambient main greenhouse gases con-centrations, tree species, and forest fire) and anthropogenic factors (forest clear-cutting and thinning, fertilization, exogenous aluminum salts and atmospheric deposition, adding biocides, and switch of forest land use) in forest soils. It was believed that CH4 consumption rate by forest soil was limited by diffusion and sensitive to changes in water status and temperature of soil. CH4 oxidation was also particularly sensitive to soil C/N, Ambient CO2, CH4 and N2O concentrations, tree species and forest fire. In most cases, anthropogenic disturbances will decrease atmospheric CH4 oxidation, thus resulting in the elevating of atmos-pheric CH4. Finally, the author pointed out that our knowledge of atmospheric CH4 oxidation (consumption) in forest soil was insufficient. In order to evaluate the contribution of forest soils to atmospheric CH4 oxidation and the role of forest played in the process of global environmental change, and to forecast the trends of global warming exactly, more researchers need to studies further on CH4 oxidation in various forest soils of different areas.展开更多
Based on A356 aluminum alloy,aluminum foams were prepared by gas injection foaming process with pure nitrogen,air and some gas mixtures.The oxygen volume fraction of these gas mixtures varied from 0.2%to 8.0%.Optical ...Based on A356 aluminum alloy,aluminum foams were prepared by gas injection foaming process with pure nitrogen,air and some gas mixtures.The oxygen volume fraction of these gas mixtures varied from 0.2%to 8.0%.Optical microscopy,scanning electron microscopy(SEM) and Auger electron spectroscopy(AES) were used to analyze the influence of oxygen content on cell structure,relative density,macro and micro morphology of cell walls,coverage area fraction of oxide film,thickness of oxide film and other aspects.Results indicate that the coverage area fraction of oxide film on bubble surface increases with the increase of oxygen content when the oxygen volume is less than 1.2%.While when the oxygen volume fraction is larger than 1.6%,an oxide film covers the entire bubble surface and aluminum foams with good cell structure can be produced.The thicknesses of oxide films of aluminum foams produced by gas mixtures containing 1.6%-21%oxygen are almost the same.The reasons why the thickness of oxide film nearly does not change with the variation of oxygen content and the amount of oxygen needed to achieve 100%coverage of oxide film are both discussed.In addition,the role of oxide film on bubble surface in foam stability is also analyzed.展开更多
A novel CVD process for the preparation of ultrafine rhenium powders was investigated using ammonium perrhenate as starting materials. In the process, volatile rhenium oxides, such as ReO4 and Re2O7, were vaporized un...A novel CVD process for the preparation of ultrafine rhenium powders was investigated using ammonium perrhenate as starting materials. In the process, volatile rhenium oxides, such as ReO4 and Re2O7, were vaporized under a controlled oxidizing atmosphere via the pyrolysis of ammonium perrhenate, and carried into reduction zone by carrier gas, and there reduced into rhenium powders by hydrogen gas. Thermodynamic calculations indicated that Re207 could be prevented from further decomposition through controlling the oxygen partial pressure higher than 10 1.248 Pa in the pyrolysis of ammonium perrhenate. This result was further validated via DSC-TGA analysis of ammonium perrhenate. The typical rhenium powders prepared by the CVD method proposed show irregular polyhedron morphology with particle size in the range of 100-800 nm and a Ds0 of 308 nm. The specific surface area and oxygen content were measured to be 4.37 m^2/g and 0.45%, respectively.展开更多
V2O5/TiO2-ZrO2 catalysts containing various amounts of WO3 were synthesized.The catalyst morphologies,catalytic performances,and reaction mechanisms in the selective catalytic reduction of NOx by NH3 were investigated...V2O5/TiO2-ZrO2 catalysts containing various amounts of WO3 were synthesized.The catalyst morphologies,catalytic performances,and reaction mechanisms in the selective catalytic reduction of NOx by NH3 were investigated using in situ diffuse-reflectance infrared Fourier-transform spectroscopy,temperature-programmed reduction(TPR),X-ray diffraction,and the Brunauer-Emmett-Teller(BET) method.The BET surface area of the triple oxides increased with increasing ZrO2 doping but gradually decreased with increasing WO3 loading.Addition of sufficient WO3 helped to stabilize the pore structure and the combination of WO3 and ZrO2 improved dispersion of all the metal oxides.The mechanisms of reactions using V2O5-9%WO3/TiO2-ZrO2 and V2O5-9%WO3/TiO2were compared by using either a single or mixed gas feed and various pretreatments.The results suggest that both reactions followed the Eley-Ridel mechanism;however,the dominant acid sites,which depended on the addition of WO3 or ZrO2,determined the pathways for NOx reduction,and involved[NH4^+-NO-Bronsted acid site]^* and[NH2-NO-Lewis acid site]^* intermediates,respectively.NH3-TPR and H2-TPR showed that the metal oxides in the catalysts were not reduced by NH3 and O2did not reoxidize the catalyst surfaces but participated in the formation of H2O and NO2.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.51777097,51577093)。
文摘Constant-current anodization of pure aluminum was carried out in non-corrosive capacitor working electrolytes to study the formation mechanism of nanopores in the anodic oxide films.Through comparative experiments,nanopores are found in the anodic films formed in the electrolytes after high-temperature storage(HTS)at 130°C for 240 h.A comparison of the voltage-time curves suggests that the formation of nanopores results from the decrease in formation efficiency of anodic oxide films rather than the corrosion of the electrolytes.FT-IR and UV spectra analysis shows that carboxylate and ethylene glycol in electrolytes can easily react by esterification at high temperatures.Combining the electronic current theory and oxygen bubble mold effect,the change in electrolyte composition could increase the electronic current in the anodizing process.The electronic current decreases the formation efficiency of anodic oxide films,and oxygen bubbles accompanying electronic current lead to the formation of nanopores in the dense films.The continuous electronic current and oxygen bubbles are the prerequisites for the formation of porous anodic oxides rather than the traditional field-assisted dissolution model.
基金This work was supported by the Natural Science Foundation of Anhui Province, China (No.1208085MD59), the National Natural Science Foundation of China (No.U1232209, No.41175121, and No.21307137), the Presidential Foundation of Hefei Institutes of Physical Science, Chinese Academy of Sciences, China (No.YZJJ201302), and the Knowledge Innovation Foundation of the Chinese Academy of Sciences (No.KJCX2-YW-N24).
文摘In order to investigate the atmospheric oxidation processes and the formation of secondary organic aerosol (SOA), an indoor environmental reaction smog chamber are constructed and characterized. The system consists of the collapsible ~830 L FEP Teflon film main reactor, in which the atmospheric chemical reactions take place and the formation of SOA occurs under the simulated atmospheric conditions, and the diverse on-line gas- and particle-phase instrumentation, such as the proton transfer reaction mass spectrometer, the synchrotron radiation photoionization mass spectrometer, the aerosol laser time-of-flight mass spectrometer, and other traditional commercial instruments. The initial characterization experiments are described, concerning the temperature and ultraviolet light intensity, the reactivity of the pure air, the wall loss rates of gaseous compounds and particulate matter. And the initial evaluation experiments for SOA yields from the ozonolysis of α-pinene and for mass spectra of the products resulting from the photooxidation of OH initiated isoprene are also presented, which indicate the applicability of this facility on the studies of gas-phase chemical mechanisms as well as the formation of SOA expected in the atmosphere.
基金supported by the National Natural Science Foundation of China(21506194,21676255)the Provincial Natural Science Foundation of Zhejiang Province(LY16B070011)the Commission of Science and Technology of Zhejiang Province(2017C33106,2017C03007)~~
文摘Platinum/cerium-zirconium-sulfate(Pt/Ce-Zr-SO_4^(2-)) catalysts were prepared by wetness impregnation.Catalytic activities were evaluated from the combustion of propene and CO.Sulfate(SO_4^(2-))addition improved the catalytic activity significantly.When using Pt/Ce-Zr-SO_4^(2-) with 10 wt%SO_4^(2-),the temperature for 90%conversion of propene and CO decreased by 75℃ compared with Pt/Ce-Zr.The conversion exceeded 95%at 240℃ even after 0.02%sulfur dioxide poisoning for 20 h.Temperature-programmed desorption of CO and X-ray photoelectron spectroscopy analyses revealed an improvement in Pt dispersion onto the Ce-Zr-SO_4^(2-) support,and the increased number of Pt particles built up more Pt^(-)-(SO_4^(2-))^(-) couples,which resulted in excellent activity.The increased total acidity and new Bronsted acid sites on the surface provided the Pt/Ce-Zr-SO_4^(2-) with good sulfur resistance.
基金This work was supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (No.KJCX2-YW-N24, No.KZCX2-YW-Q02-03)the National Basic Research Program of China of Ministry of Science and Technology of China (No.2011CB403401) and the National Natural' Science Foundation of China (No.40925016, No.40830101, No.21077109, and No.41005070).
文摘The interaction of mineral oxides (α-A12O3, MgO, Fe2O3, and SiO2) with hydrogen peroxide was investigated using the Knudsen cell reactor. The initial reactive uptake coefficients for tile commercially available powders are measured as (1.00±0.11)×10-4 for α-A1203, (1.66±0.23)×10-4 for MgO, (9.70±1.95)×10-5 for Fe203, and (5.22±0.9)×10-5 for SiO2. These metal oxide powders exhibit some catalytic behavior toward the decomposition of hydrogen peroxide excluding SiO2. H2O2 can be destroyed on Fe2O3 surface and O2 is formed. The experimental results suggest that the heterogeneous loss on mineral surface can represent an important sink of hydrogen peroxide.
基金National Natural Science Foundation of China (No. 40171092).
文摘Next to CO2, methane (CH4) is the second important contributor to global warming in the atmosphere and global atmospheric CH4 budget depends on both CH4 sources and sinks. Unsaturated soil is known as a unique sink for atmospheric CH4 in terrestrial ecosystem. Many comparison studies proved that forest soil had the biggest capacity of oxidizing atmospheric CH4 in various unsaturated soils. However, up to now, there is not an overall review in the aspect of atmospheric CH4 oxidation (consumption) in forest soil. This paper analyzed advances of studies on the mechanism of atmospheric CH4 oxidation, and re-lated natural factors (Soil physical and chemical characters, temperature and moisture, ambient main greenhouse gases con-centrations, tree species, and forest fire) and anthropogenic factors (forest clear-cutting and thinning, fertilization, exogenous aluminum salts and atmospheric deposition, adding biocides, and switch of forest land use) in forest soils. It was believed that CH4 consumption rate by forest soil was limited by diffusion and sensitive to changes in water status and temperature of soil. CH4 oxidation was also particularly sensitive to soil C/N, Ambient CO2, CH4 and N2O concentrations, tree species and forest fire. In most cases, anthropogenic disturbances will decrease atmospheric CH4 oxidation, thus resulting in the elevating of atmos-pheric CH4. Finally, the author pointed out that our knowledge of atmospheric CH4 oxidation (consumption) in forest soil was insufficient. In order to evaluate the contribution of forest soils to atmospheric CH4 oxidation and the role of forest played in the process of global environmental change, and to forecast the trends of global warming exactly, more researchers need to studies further on CH4 oxidation in various forest soils of different areas.
基金Project(51371104)supported by the National Natural Science Foundation of China
文摘Based on A356 aluminum alloy,aluminum foams were prepared by gas injection foaming process with pure nitrogen,air and some gas mixtures.The oxygen volume fraction of these gas mixtures varied from 0.2%to 8.0%.Optical microscopy,scanning electron microscopy(SEM) and Auger electron spectroscopy(AES) were used to analyze the influence of oxygen content on cell structure,relative density,macro and micro morphology of cell walls,coverage area fraction of oxide film,thickness of oxide film and other aspects.Results indicate that the coverage area fraction of oxide film on bubble surface increases with the increase of oxygen content when the oxygen volume is less than 1.2%.While when the oxygen volume fraction is larger than 1.6%,an oxide film covers the entire bubble surface and aluminum foams with good cell structure can be produced.The thicknesses of oxide films of aluminum foams produced by gas mixtures containing 1.6%-21%oxygen are almost the same.The reasons why the thickness of oxide film nearly does not change with the variation of oxygen content and the amount of oxygen needed to achieve 100%coverage of oxide film are both discussed.In addition,the role of oxide film on bubble surface in foam stability is also analyzed.
文摘A novel CVD process for the preparation of ultrafine rhenium powders was investigated using ammonium perrhenate as starting materials. In the process, volatile rhenium oxides, such as ReO4 and Re2O7, were vaporized under a controlled oxidizing atmosphere via the pyrolysis of ammonium perrhenate, and carried into reduction zone by carrier gas, and there reduced into rhenium powders by hydrogen gas. Thermodynamic calculations indicated that Re207 could be prevented from further decomposition through controlling the oxygen partial pressure higher than 10 1.248 Pa in the pyrolysis of ammonium perrhenate. This result was further validated via DSC-TGA analysis of ammonium perrhenate. The typical rhenium powders prepared by the CVD method proposed show irregular polyhedron morphology with particle size in the range of 100-800 nm and a Ds0 of 308 nm. The specific surface area and oxygen content were measured to be 4.37 m^2/g and 0.45%, respectively.
基金supported by the National Natural Science Foundation of China(51306034)Key Research&Development Projects of Jiangsu Province(BE2015677)the National Basic Research Program of China(2013CB228505)~~
文摘V2O5/TiO2-ZrO2 catalysts containing various amounts of WO3 were synthesized.The catalyst morphologies,catalytic performances,and reaction mechanisms in the selective catalytic reduction of NOx by NH3 were investigated using in situ diffuse-reflectance infrared Fourier-transform spectroscopy,temperature-programmed reduction(TPR),X-ray diffraction,and the Brunauer-Emmett-Teller(BET) method.The BET surface area of the triple oxides increased with increasing ZrO2 doping but gradually decreased with increasing WO3 loading.Addition of sufficient WO3 helped to stabilize the pore structure and the combination of WO3 and ZrO2 improved dispersion of all the metal oxides.The mechanisms of reactions using V2O5-9%WO3/TiO2-ZrO2 and V2O5-9%WO3/TiO2were compared by using either a single or mixed gas feed and various pretreatments.The results suggest that both reactions followed the Eley-Ridel mechanism;however,the dominant acid sites,which depended on the addition of WO3 or ZrO2,determined the pathways for NOx reduction,and involved[NH4^+-NO-Bronsted acid site]^* and[NH2-NO-Lewis acid site]^* intermediates,respectively.NH3-TPR and H2-TPR showed that the metal oxides in the catalysts were not reduced by NH3 and O2did not reoxidize the catalyst surfaces but participated in the formation of H2O and NO2.