Highly dispersed bimetallic alloy nanoparticle electrocatalysts have been demonstrated to exhibit exceptional performance in driving the nitrate reduction reaction(NO_(3)RR)to generate ammonia(NH_(3)).In this study,we...Highly dispersed bimetallic alloy nanoparticle electrocatalysts have been demonstrated to exhibit exceptional performance in driving the nitrate reduction reaction(NO_(3)RR)to generate ammonia(NH_(3)).In this study,we prepared mesoporous carbon nanofibers(mCNFs)functionalized with ordered PtFe alloys(O-PtFe-mCNFs)by a composite micelle interface-induced co-assembly method using poly(ethylene oxide)-block-polystyrene(PEO-b-PS)as a template.When employed as electrocatalysts,O-PtFe-mCNFs exhibited superior electrocatalytic performance for the NO_(3RR)compared to the mCNFs functionalized with disordered PtFe alloys(D-PtFe-mCNFs).Notably,the NH_(3)production performance was particularly outstanding,with a maximum NH_(3)yield of up to 959.6μmol/(h·cm~2).Furthermore,the Faraday efficiency(FE)was even 88.0%at-0.4 V vs.reversible hydrogen electrode(RHE).This finding provides compelling evidence of the potential of ordered PtFe alloy catalysts for the electrocatalytic NO_(3)RR.展开更多
Although metal oxide-zeolite hybrid materials have long been known to achieve enhanced catalytic activity and selectivity in NO_(x)removal reactions through the inter-particle diffusion of intermediate species,their s...Although metal oxide-zeolite hybrid materials have long been known to achieve enhanced catalytic activity and selectivity in NO_(x)removal reactions through the inter-particle diffusion of intermediate species,their subsequent reaction mechanism on acid sites is still unclear and requires investigation.In this study,the distribution of Brønsted/Lewis acid sites in the hybrid materials was precisely adjusted by introducing potassium ions,which not only selectively bind to Brønsted acid sites but also potentially affect the formation and diffusion of activated NO species.Systematic in situ diffuse reflectance infrared Fourier transform spectroscopy analyses coupled with selective catalytic reduction of NO_(x)with NH_(3)(NH_(3)-SCR)reaction demonstrate that the Lewis acid sites over MnO_(x)are more active for NO reduction but have lower selectivity to N_(2)than Brønsted acids sites.Brønsted acid sites primarily produce N_(2),whereas Lewis acid sites primarily produce N_(2)O,contributing to unfavorable N_(2)selectivity.The Brønsted acid sites present in Y zeolite,which are stronger than those on MnO_(x),accelerate the NH_(3)-SCR reaction in which the nitrite/nitrate species diffused from the MnO_(x)particles rapidly convert into the N_(2).Therefore,it is important to design the catalyst so that the activated NO species formed in MnO_(x)diffuse to and are selectively decomposed on the Brønsted acid sites of H-Y zeolite rather than that of MnO_(x)particle.For the physically mixed H-MnO_(x)+H-Y sample,the abundant Brønsted/Lewis acid sites in H-MnO_(x)give rise to significant consumption of activated NO species before their inter-particle diffusion,thereby hindering the enhancement of the synergistic effects.Furthermore,we found that the intercalated K+in K-MnO_(x)has an unexpected favorable role in the NO reduction rate,probably owing to faster diffusion of the activated NO species on K-MnO_(x)than H-MnO_(x).This study will help to design promising metal oxide-zeolite hybrid catalysts by identifying the role of the acid sites in two different constituents.展开更多
Polymer matrix types of fiber hybrid composites are key factors to improve ballistic impact damage tolerances.Here we report ballistic penetration damages of Kevlar/ultra-high molecular weight polyethylene(UHMWPE)hybr...Polymer matrix types of fiber hybrid composites are key factors to improve ballistic impact damage tolerances.Here we report ballistic penetration damages of Kevlar/ultra-high molecular weight polyethylene(UHMWPE)hybrid composites with thermoplastic polyurethane(PU)matrix.The hybrid composites were penetrated by fragment-simulating projectiles(FSPs)using an air gun impact system.The effects of stacking sequences on the ballistic performance of hybrid composites were analyzed.Two types of specific energy absorption(the energy absorption per unit area density and the energy absorption per unit thickness)were investigated.It was found that the main damage modes of PU hybrid composites were fiber breakage,matrix damage,fiber pullout and interlayer delamination.The instantaneous deformation could not be used as a reference index for evaluating the ballistic performance of the target plate.The energy absorption process of the PU hybrid composites showed a nonlinear pattern.The hybrid structure affected the specific energy absorption of the materials.展开更多
Compared to traditional polymer hydrogels,supramolecular hydrogels exhibits superior reversibility and stimulus response due to the instantaneous and reversible nature of non-covalent bonds.In this paper,we utilized t...Compared to traditional polymer hydrogels,supramolecular hydrogels exhibits superior reversibility and stimulus response due to the instantaneous and reversible nature of non-covalent bonds.In this paper,we utilized the host-guest exclusion interaction between Decamethylcucurbit[5]uril(Me_(10)Q[5])and the 2,7-diaminofluorenedihydrochloride(DAF·HCl)to construct a Q[n]-based hydrogel system.The composition,structure,and properties of the hydrogel were compre-hensively characterized using rheometer,nuclear magnetic resonance,scanning electron microscope.This cost-effective and straightforward hydrogel synthesis method paves the way for the scalable production of practical and commercially viable Q[n]-based hydrogels.展开更多
Lysine-rich protein gene (lys) was cloned from Psophocarpus tetragonolobus (L.) DC. A plant expression plasmid was constructed and lys gene was under the control of maize ubiquitin promoter which is the highest effici...Lysine-rich protein gene (lys) was cloned from Psophocarpus tetragonolobus (L.) DC. A plant expression plasmid was constructed and lys gene was under the control of maize ubiquitin promoter which is the highest efficient monocotyledon promoter. The plasmid was introduced into rice embryogenic calli by microprojectile bombardment. The regenerated fertile plants were obtained by effective selection for hygromycin B resistance. Genomic PCR and Southern blotting analyses showed that the lys gene has been integrated into rice genome. Simultaneously, the results of GUS histochemical assay demonstrated that gus report gene is also expressed in leaves, stems and roots of the transgenic rice plants. Data analysis showed that lysine content in most of the 11 transgenic plants is differently improved, and in one of them increased by 16.04%.展开更多
C-14-glutamate and C-14-arginine were spreaded on leaves of six-day old barley (Hordeum vulgare L.) seedlings that were treated with NaCl 200 mmol/L. The result showed that the pathway of arginine-->ornithine-->...C-14-glutamate and C-14-arginine were spreaded on leaves of six-day old barley (Hordeum vulgare L.) seedlings that were treated with NaCl 200 mmol/L. The result showed that the pathway of arginine-->ornithine-->proline existed in the six-day old barley seedlings and was provoked remarkably by NaCl treatment. After seven days, proline accumulation contributed via the arginine-->ornithine-->proline pathway was 1.0 - 1.5 folds of that via the glutamate-->proline pathway. The activation of arginine-->ornithine-->proline pathway by salt stress in the salt-tolerant cultivar 'Jian 4' was 1.7 - 2.0 folds of that in the salt-sensitive cultivar 'KP 7', which suggested that the activation of arginine-->ornithine-->proline pathway in barley seedlings played an important role in improving salt tolerance of plants.展开更多
Mg2+ and PO43+ were added into the synthetic wastewater, leading to the dissociation of the complex ions in the wastewater, and resulting in removal of copper and ammonia therein. The effects of agents addition amo...Mg2+ and PO43+ were added into the synthetic wastewater, leading to the dissociation of the complex ions in the wastewater, and resulting in removal of copper and ammonia therein. The effects of agents addition amount, pH, and reaction time on the removal efficiency of copper and ammonia were investigated. In particular, two-sectional struvite formation (TSSF) process was established for copper and ammonia removal. MgCl2 and Na2HPO4 were added by following 90% addition in the first section and remained 10% in the second during the TSSF process. Compared with one sectional struvite formation, TSSF possessed much better performance. Under condition of n(NH3-N):n(Mg):n(P)=1:1.2:1.5 (molar ratio), pH=9, and reaction time of 30 min, the removal efficiencies of copper and ammonia were 98.9% and 99.96%, respectively. The enhanced performance of TSSF is explained by the competition of ammonia by copper?ammonia complexes and struvite. The dissociation of copper-ammonia complexes is further demonstrated by thermodynamic equilibrium analysis, on the basis of calculations and establishment of predominance phases diagram. Moreover, XRD and EDS analyses further confirmed the formation of struvite and precipitation of copper, which prove the transmission of copper and ammonia from liquid phase into solid phase.展开更多
High-purity magnesium ammonium phosphate (MAP) was precipitated by controlling pH value of the reaction system of 9.0-9.5. The thermal decomposition behavior of MAP and the adsorption properties of its pyrolysis pro...High-purity magnesium ammonium phosphate (MAP) was precipitated by controlling pH value of the reaction system of 9.0-9.5. The thermal decomposition behavior of MAP and the adsorption properties of its pyrolysis products toward ammonia-nitrogen were also studied by XRD, SEM, TGA-DTA and FT-IR methods. The results indicated that high-purity MAP was obtained at pH value of 9.0-9.5. Upon heating to 100-120℃ for 120 min, MAP was thermally decomposed, losing water and ammonia concomitantly with a reduction in grain size and crystallinity. The capacity of pyrolysis products for ammonia nitrogen adsorption reached 72.5 mg/g, with a removal rate of up to 95% from an 800 mg/L solution. The characteristic diffraction peaks corresponding to MAP mainly appeared in their XRD patterns after adsorption of ammonia nitrogen. The pyrolysis products of MAP at 100-120 ℃ could be recycling-used as the chemical treatment regents of ammonia nitrogen in the practical application.展开更多
Porous graphitic carbon nitride(pg-C3N4) nanosheets have been prepared through a one-step ammonia thermopolymerization method.The effects of synthetic temperature on the structural,optical and photocatalytic propert...Porous graphitic carbon nitride(pg-C3N4) nanosheets have been prepared through a one-step ammonia thermopolymerization method.The effects of synthetic temperature on the structural,optical and photocatalytic properties of the samples have been investigated.Characterization results show that the heptazine-based conjugate heterocyclic structure was formed over 500℃,which is attributed to the inhibitory effect of ammonia from the decomposition of NH4SCN.Precise nanosheet morphology and an increased pore distribution with an enlarged surface area are observed for the samples obtained under high temperatures.Optical analysis results show that the bandgap of the samples widens and photoluminescene intensity is gradually quenched as the treating temperature is increased.The results demonstrate that a higher polymerization temperature improves the nanolayer structure,porosity and migration rate of the photo-induced carriers of the samples.The pg-C3N4 nanosheets prepared at 600℃ presents the highest photocatalytic activity for hydrogen evolution from water under visible-light irradiation.This study demonstrates a novel strategy for the synthesis and optimization of polymer semiconductor nanosheets with gratifying photocatalytic performance.展开更多
In order to achieve the dual goals of complete deamination of magnesium ammonium phosphate(MAP) and ensure the pyrolysate's good removal properties towards ammonia-nitrogen, a temperature-programmed method for the ...In order to achieve the dual goals of complete deamination of magnesium ammonium phosphate(MAP) and ensure the pyrolysate's good removal properties towards ammonia-nitrogen, a temperature-programmed method for the pyrolysis of MAP was studied, as well as the thermodynamic and kinetic processes involved in the removal reaction system between MAP pyrolysate and aqueous ammonium. It was found that the pyrolysis method and pyrolysis final temperature had significant effects on the MAP pyrolysate's removal properties towards aqueous ammonium, and the following conditions were deemed to be more appropriate: pyrolysis final temperature and heating rate at 180 ℃ and 5 ℃/min, respectively, and a pH level of 9.5 for the removal reaction system. The resultant ammonium removal capacity by the MAP pyrolysate was 95.62 mg/g. After 120 min, the removal rate with an initial concentration of 1000 mg/L was 82%. The kinetic and thermodynamic results indicated that the removal of aqueous ammonium by MAP pyrolysate was the exchange process between H^+ and NH4^+ via MAP precipitation. The kinetics complied with the Lagergren quasi second-order model with an equilibrium time of 120 min, while the isothermal curves complied with the Freundlich model.展开更多
A pot experiment was conducted to study the influences of foliar application of glycine,alanine,lysine,and glutamic acid in 200 mg/kg or 500 mg/kg upon the quality and enzyme activity of flowering Chinese cabbage(Bra...A pot experiment was conducted to study the influences of foliar application of glycine,alanine,lysine,and glutamic acid in 200 mg/kg or 500 mg/kg upon the quality and enzyme activity of flowering Chinese cabbage(Brassica parachinensis Bailey).The results showed that all the application of these four amino acids could increase the yield of flowering Chinese cabbage,significantly raise the content of soluble sugar,and reduce the accumulation of nitrate.The applications of three other amino acids except alanine can increase the content of soluble proteins and decrease the accumulation of oxalic acid.However,the application of amino acid has insignificant influences on the SPAD number of chlorophyll,and causes the decrease of Vitamin C content.Meanwhile,the application of amino acid can improve the activity of nitrate reductase(NR) and glutamate dehydrogenase(GDH) as well.It shows that the application of amino acid is beneficial to improve ammonia metabolism,reduce the accumulation of nitrate and oxalic acid,increase the content of soluble sugar and soluble proteins,and improve the quality of flowering Chinese cabbage.展开更多
Recent studies show that a reduced effect of inhibitory transmitter system in the visual cortex may underlie aged visual function degradation. Whether excitatory transmitter system changes with age and hence affects i...Recent studies show that a reduced effect of inhibitory transmitter system in the visual cortex may underlie aged visual function degradation. Whether excitatory transmitter system changes with age and hence affects intracortical excitation-inhibition balance is not clear. To explore this issue, we used Nissl staining and immunohistochemical methods as well as Image-Pro Express software to examine the density of Nissl-stained neurons, Glutamie acid-immunoreactive (Glu-IR) neurons and T-Aminobutyric acid-immunoreactive (GABA-IR) neurons in the primary visual cortex of young adult and aged cats. The results showed that there was no significant difference in the density of Nissl-stained neurons between young and old cats (2〉0.05). However, the density of Glu-IR neurons and GABA-IR neurons in the primary visual cortex of aged cats was significantly lower than that of young ones (P〈0.01). The ratio between Glu-IR neurons and GABA-IR neurons was significantly increased in old cats compared to that in young adult ones (P〈0.01). These results indicated that the effect of excitatory transmitter system in the old visual cortex was increased relative to the inhibitory transmitter system, which might cause an imbalance between cortical excitation and inhibition and might be an important factor mediating the visual function decline during aging.展开更多
The extraction behaviors of zinc from ammoniacal solutions were investigated using β-diketone (HA) and their mixtures with CYANEX923 or LIX84I. The effects of pH, total ammonia concentration, extractant concentrati...The extraction behaviors of zinc from ammoniacal solutions were investigated using β-diketone (HA) and their mixtures with CYANEX923 or LIX84I. The effects of pH, total ammonia concentration, extractant concentration, anion species and temperature on zinc extraction were examined. The synergistic mechanism was discussed with regard to the structure of extractant and the extracted zinc complexes. It is found that the increase of total ammonia concentration and pH inhibits zinc extraction for all extraction systems due to the formation of zinc ammine complexes in aqueous phase. This effect of HA with CYANEX923 is evidently smaller than that of HA with LIX84I or HA alone system. Effect of anion species on the zinc extraction by HA with CYANEX923 can be neglected, but this effect of HA alone and the mixture of HA with LIX84I decreases in the order of (NH4)2SO4 〉 NH4NO3 〉 NH4Cl.展开更多
Amino-bacterial cellulose(amino-BC) was prepared by chemical modification of bacterial cellulose(BC).The adsorption characteristics and mechanism of amino-BC were studied.The results show that adsorption data can ...Amino-bacterial cellulose(amino-BC) was prepared by chemical modification of bacterial cellulose(BC).The adsorption characteristics and mechanism of amino-BC were studied.The results show that adsorption data can be fitted well by Langmuir equation and the pseudo-second order kinetics,indicating that the adsorption of amino-BC would obey monolayer molecule adsorption and the main action was chemisorption.Meanwhile,the adsorption process was studied by the Elovich equation and the intra-particle diffusion model,indicating that the absorption characteristics of metal ions on amino-BC is controlled by both film diffusion and particle diffusion.The increase of reaction temperature will accelerate the adsorbing rate because of endothermic reaction.展开更多
A study was conducted to explore the defense response in woody plants after insect herbivory. The activities of two enzymes, lipoxygenase (LOX), a key enzyme ofjasmonate (JA) pathway, and phenylalanine ammonia lya...A study was conducted to explore the defense response in woody plants after insect herbivory. The activities of two enzymes, lipoxygenase (LOX), a key enzyme ofjasmonate (JA) pathway, and phenylalanine ammonia lyase (PAL), a rate-limiting enzyme of phenyl- propanoid pathway, were measured in the leaves of one-year-old poplar (Populus simonii × P. pyramidalis 'Opera 8277') cuttings after Clostera anachoreta larvae attack. The results show that the increased activities of LOX and PAL were found not only in the leaves wounded by C. anachoreta larvae but also in their tipper systemic leaves, indicating that JA and phenylpropanoid pathways were activated, and the defense response was stimulated systemically. The increase in LOX and PAL activities in neighboring intact poplar cuttings sug- gested that there exists the interplant communication between poplar plants mediated by the herbivore-induced volatiles. Methyl jasmonate (MeJA) was also proved to be an airborne signal to induce defense response in P simonii × P pyramidalis 'Opera 8277' cuttings.展开更多
基金National Natural Science Foundation of China(Nos.52225204,52173233 and 52202085)Innovation Program of Shanghai Municipal Education Commission,China(No.2021-01-07-00-03-E00109)+3 种基金Natural Science Foundation of Shanghai,China(No.23ZR1479200)“Shuguang Program”Supported by Shanghai Education Development Foundation and Shanghai Municipal Education Commission,China(No.20SG33)Fundamental Research Funds for the Central Universities,China(No.2232024Y-01)DHU Distinguished Young Professor Program,China(Nos.LZA2022001 and LZB2023002)。
文摘Highly dispersed bimetallic alloy nanoparticle electrocatalysts have been demonstrated to exhibit exceptional performance in driving the nitrate reduction reaction(NO_(3)RR)to generate ammonia(NH_(3)).In this study,we prepared mesoporous carbon nanofibers(mCNFs)functionalized with ordered PtFe alloys(O-PtFe-mCNFs)by a composite micelle interface-induced co-assembly method using poly(ethylene oxide)-block-polystyrene(PEO-b-PS)as a template.When employed as electrocatalysts,O-PtFe-mCNFs exhibited superior electrocatalytic performance for the NO_(3RR)compared to the mCNFs functionalized with disordered PtFe alloys(D-PtFe-mCNFs).Notably,the NH_(3)production performance was particularly outstanding,with a maximum NH_(3)yield of up to 959.6μmol/(h·cm~2).Furthermore,the Faraday efficiency(FE)was even 88.0%at-0.4 V vs.reversible hydrogen electrode(RHE).This finding provides compelling evidence of the potential of ordered PtFe alloy catalysts for the electrocatalytic NO_(3)RR.
文摘Although metal oxide-zeolite hybrid materials have long been known to achieve enhanced catalytic activity and selectivity in NO_(x)removal reactions through the inter-particle diffusion of intermediate species,their subsequent reaction mechanism on acid sites is still unclear and requires investigation.In this study,the distribution of Brønsted/Lewis acid sites in the hybrid materials was precisely adjusted by introducing potassium ions,which not only selectively bind to Brønsted acid sites but also potentially affect the formation and diffusion of activated NO species.Systematic in situ diffuse reflectance infrared Fourier transform spectroscopy analyses coupled with selective catalytic reduction of NO_(x)with NH_(3)(NH_(3)-SCR)reaction demonstrate that the Lewis acid sites over MnO_(x)are more active for NO reduction but have lower selectivity to N_(2)than Brønsted acids sites.Brønsted acid sites primarily produce N_(2),whereas Lewis acid sites primarily produce N_(2)O,contributing to unfavorable N_(2)selectivity.The Brønsted acid sites present in Y zeolite,which are stronger than those on MnO_(x),accelerate the NH_(3)-SCR reaction in which the nitrite/nitrate species diffused from the MnO_(x)particles rapidly convert into the N_(2).Therefore,it is important to design the catalyst so that the activated NO species formed in MnO_(x)diffuse to and are selectively decomposed on the Brønsted acid sites of H-Y zeolite rather than that of MnO_(x)particle.For the physically mixed H-MnO_(x)+H-Y sample,the abundant Brønsted/Lewis acid sites in H-MnO_(x)give rise to significant consumption of activated NO species before their inter-particle diffusion,thereby hindering the enhancement of the synergistic effects.Furthermore,we found that the intercalated K+in K-MnO_(x)has an unexpected favorable role in the NO reduction rate,probably owing to faster diffusion of the activated NO species on K-MnO_(x)than H-MnO_(x).This study will help to design promising metal oxide-zeolite hybrid catalysts by identifying the role of the acid sites in two different constituents.
基金National Natural Science Foundation of China(No.51875099)。
文摘Polymer matrix types of fiber hybrid composites are key factors to improve ballistic impact damage tolerances.Here we report ballistic penetration damages of Kevlar/ultra-high molecular weight polyethylene(UHMWPE)hybrid composites with thermoplastic polyurethane(PU)matrix.The hybrid composites were penetrated by fragment-simulating projectiles(FSPs)using an air gun impact system.The effects of stacking sequences on the ballistic performance of hybrid composites were analyzed.Two types of specific energy absorption(the energy absorption per unit area density and the energy absorption per unit thickness)were investigated.It was found that the main damage modes of PU hybrid composites were fiber breakage,matrix damage,fiber pullout and interlayer delamination.The instantaneous deformation could not be used as a reference index for evaluating the ballistic performance of the target plate.The energy absorption process of the PU hybrid composites showed a nonlinear pattern.The hybrid structure affected the specific energy absorption of the materials.
文摘Compared to traditional polymer hydrogels,supramolecular hydrogels exhibits superior reversibility and stimulus response due to the instantaneous and reversible nature of non-covalent bonds.In this paper,we utilized the host-guest exclusion interaction between Decamethylcucurbit[5]uril(Me_(10)Q[5])and the 2,7-diaminofluorenedihydrochloride(DAF·HCl)to construct a Q[n]-based hydrogel system.The composition,structure,and properties of the hydrogel were compre-hensively characterized using rheometer,nuclear magnetic resonance,scanning electron microscope.This cost-effective and straightforward hydrogel synthesis method paves the way for the scalable production of practical and commercially viable Q[n]-based hydrogels.
文摘Lysine-rich protein gene (lys) was cloned from Psophocarpus tetragonolobus (L.) DC. A plant expression plasmid was constructed and lys gene was under the control of maize ubiquitin promoter which is the highest efficient monocotyledon promoter. The plasmid was introduced into rice embryogenic calli by microprojectile bombardment. The regenerated fertile plants were obtained by effective selection for hygromycin B resistance. Genomic PCR and Southern blotting analyses showed that the lys gene has been integrated into rice genome. Simultaneously, the results of GUS histochemical assay demonstrated that gus report gene is also expressed in leaves, stems and roots of the transgenic rice plants. Data analysis showed that lysine content in most of the 11 transgenic plants is differently improved, and in one of them increased by 16.04%.
文摘C-14-glutamate and C-14-arginine were spreaded on leaves of six-day old barley (Hordeum vulgare L.) seedlings that were treated with NaCl 200 mmol/L. The result showed that the pathway of arginine-->ornithine-->proline existed in the six-day old barley seedlings and was provoked remarkably by NaCl treatment. After seven days, proline accumulation contributed via the arginine-->ornithine-->proline pathway was 1.0 - 1.5 folds of that via the glutamate-->proline pathway. The activation of arginine-->ornithine-->proline pathway by salt stress in the salt-tolerant cultivar 'Jian 4' was 1.7 - 2.0 folds of that in the salt-sensitive cultivar 'KP 7', which suggested that the activation of arginine-->ornithine-->proline pathway in barley seedlings played an important role in improving salt tolerance of plants.
基金Project(51674305)supported by the National Natural Science Foundation of ChinaProject(2013WK2007)supported by the Key Project of Science and Technology of Hunan Province,China+1 种基金Project(2015CX001)supported by the Innovation Stimulating Program of Central South University,ChinaKey Project(1602FKDC007)supported by Science and Technology Program of Gansu Province,China
文摘Mg2+ and PO43+ were added into the synthetic wastewater, leading to the dissociation of the complex ions in the wastewater, and resulting in removal of copper and ammonia therein. The effects of agents addition amount, pH, and reaction time on the removal efficiency of copper and ammonia were investigated. In particular, two-sectional struvite formation (TSSF) process was established for copper and ammonia removal. MgCl2 and Na2HPO4 were added by following 90% addition in the first section and remained 10% in the second during the TSSF process. Compared with one sectional struvite formation, TSSF possessed much better performance. Under condition of n(NH3-N):n(Mg):n(P)=1:1.2:1.5 (molar ratio), pH=9, and reaction time of 30 min, the removal efficiencies of copper and ammonia were 98.9% and 99.96%, respectively. The enhanced performance of TSSF is explained by the competition of ammonia by copper?ammonia complexes and struvite. The dissociation of copper-ammonia complexes is further demonstrated by thermodynamic equilibrium analysis, on the basis of calculations and establishment of predominance phases diagram. Moreover, XRD and EDS analyses further confirmed the formation of struvite and precipitation of copper, which prove the transmission of copper and ammonia from liquid phase into solid phase.
基金Project(ZDSY20120619093952884)supported by Shenzhen Strategic New Industry Development,China
文摘High-purity magnesium ammonium phosphate (MAP) was precipitated by controlling pH value of the reaction system of 9.0-9.5. The thermal decomposition behavior of MAP and the adsorption properties of its pyrolysis products toward ammonia-nitrogen were also studied by XRD, SEM, TGA-DTA and FT-IR methods. The results indicated that high-purity MAP was obtained at pH value of 9.0-9.5. Upon heating to 100-120℃ for 120 min, MAP was thermally decomposed, losing water and ammonia concomitantly with a reduction in grain size and crystallinity. The capacity of pyrolysis products for ammonia nitrogen adsorption reached 72.5 mg/g, with a removal rate of up to 95% from an 800 mg/L solution. The characteristic diffraction peaks corresponding to MAP mainly appeared in their XRD patterns after adsorption of ammonia nitrogen. The pyrolysis products of MAP at 100-120 ℃ could be recycling-used as the chemical treatment regents of ammonia nitrogen in the practical application.
基金supported by the National Natural Science Foundation of China(21503096)the Natural Science Foundation of Jiangsu Province(BK20140507)~~
文摘Porous graphitic carbon nitride(pg-C3N4) nanosheets have been prepared through a one-step ammonia thermopolymerization method.The effects of synthetic temperature on the structural,optical and photocatalytic properties of the samples have been investigated.Characterization results show that the heptazine-based conjugate heterocyclic structure was formed over 500℃,which is attributed to the inhibitory effect of ammonia from the decomposition of NH4SCN.Precise nanosheet morphology and an increased pore distribution with an enlarged surface area are observed for the samples obtained under high temperatures.Optical analysis results show that the bandgap of the samples widens and photoluminescene intensity is gradually quenched as the treating temperature is increased.The results demonstrate that a higher polymerization temperature improves the nanolayer structure,porosity and migration rate of the photo-induced carriers of the samples.The pg-C3N4 nanosheets prepared at 600℃ presents the highest photocatalytic activity for hydrogen evolution from water under visible-light irradiation.This study demonstrates a novel strategy for the synthesis and optimization of polymer semiconductor nanosheets with gratifying photocatalytic performance.
基金Project(ZDSY20120619093952884)supported by Shenzhen Strategic New Industry Development,China
文摘In order to achieve the dual goals of complete deamination of magnesium ammonium phosphate(MAP) and ensure the pyrolysate's good removal properties towards ammonia-nitrogen, a temperature-programmed method for the pyrolysis of MAP was studied, as well as the thermodynamic and kinetic processes involved in the removal reaction system between MAP pyrolysate and aqueous ammonium. It was found that the pyrolysis method and pyrolysis final temperature had significant effects on the MAP pyrolysate's removal properties towards aqueous ammonium, and the following conditions were deemed to be more appropriate: pyrolysis final temperature and heating rate at 180 ℃ and 5 ℃/min, respectively, and a pH level of 9.5 for the removal reaction system. The resultant ammonium removal capacity by the MAP pyrolysate was 95.62 mg/g. After 120 min, the removal rate with an initial concentration of 1000 mg/L was 82%. The kinetic and thermodynamic results indicated that the removal of aqueous ammonium by MAP pyrolysate was the exchange process between H^+ and NH4^+ via MAP precipitation. The kinetics complied with the Lagergren quasi second-order model with an equilibrium time of 120 min, while the isothermal curves complied with the Freundlich model.
基金Supported by National Scientific and Technological Supporting Project(2008BADA4B04-09)Guangdong Province Scientific and Technological Project(2008A020100017)Guangdong Province Department of Finance Project[(2006)143]~~
文摘A pot experiment was conducted to study the influences of foliar application of glycine,alanine,lysine,and glutamic acid in 200 mg/kg or 500 mg/kg upon the quality and enzyme activity of flowering Chinese cabbage(Brassica parachinensis Bailey).The results showed that all the application of these four amino acids could increase the yield of flowering Chinese cabbage,significantly raise the content of soluble sugar,and reduce the accumulation of nitrate.The applications of three other amino acids except alanine can increase the content of soluble proteins and decrease the accumulation of oxalic acid.However,the application of amino acid has insignificant influences on the SPAD number of chlorophyll,and causes the decrease of Vitamin C content.Meanwhile,the application of amino acid can improve the activity of nitrate reductase(NR) and glutamate dehydrogenase(GDH) as well.It shows that the application of amino acid is beneficial to improve ammonia metabolism,reduce the accumulation of nitrate and oxalic acid,increase the content of soluble sugar and soluble proteins,and improve the quality of flowering Chinese cabbage.
基金Natural Science Fund of Anhui Province (070413138)Key Laboratory Foundation of Anhui Province for Researches on the Conservation and Utilization of Important Biological ResourceKey Laboratory Foundation for Universities and Colleges in Anhui
文摘Recent studies show that a reduced effect of inhibitory transmitter system in the visual cortex may underlie aged visual function degradation. Whether excitatory transmitter system changes with age and hence affects intracortical excitation-inhibition balance is not clear. To explore this issue, we used Nissl staining and immunohistochemical methods as well as Image-Pro Express software to examine the density of Nissl-stained neurons, Glutamie acid-immunoreactive (Glu-IR) neurons and T-Aminobutyric acid-immunoreactive (GABA-IR) neurons in the primary visual cortex of young adult and aged cats. The results showed that there was no significant difference in the density of Nissl-stained neurons between young and old cats (2〉0.05). However, the density of Glu-IR neurons and GABA-IR neurons in the primary visual cortex of aged cats was significantly lower than that of young ones (P〈0.01). The ratio between Glu-IR neurons and GABA-IR neurons was significantly increased in old cats compared to that in young adult ones (P〈0.01). These results indicated that the effect of excitatory transmitter system in the old visual cortex was increased relative to the inhibitory transmitter system, which might cause an imbalance between cortical excitation and inhibition and might be an important factor mediating the visual function decline during aging.
基金Project (2007CB613601) supported by the National Basic Research Program of ChinaProject (CX2010B112) supported by Hunan Provincial Innovation Foundation for Postgraduate, China
文摘The extraction behaviors of zinc from ammoniacal solutions were investigated using β-diketone (HA) and their mixtures with CYANEX923 or LIX84I. The effects of pH, total ammonia concentration, extractant concentration, anion species and temperature on zinc extraction were examined. The synergistic mechanism was discussed with regard to the structure of extractant and the extracted zinc complexes. It is found that the increase of total ammonia concentration and pH inhibits zinc extraction for all extraction systems due to the formation of zinc ammine complexes in aqueous phase. This effect of HA with CYANEX923 is evidently smaller than that of HA with LIX84I or HA alone system. Effect of anion species on the zinc extraction by HA with CYANEX923 can be neglected, but this effect of HA alone and the mixture of HA with LIX84I decreases in the order of (NH4)2SO4 〉 NH4NO3 〉 NH4Cl.
基金Project (20130206059G X) supported by Science and Technology Key Project of Jilin Province,ChinaProject (20101553) supported by the Natural Science Foundation of Jilin Province,China+1 种基金Project (BSJXM-201226) supported by Doctor Science Research Starting Projects of Northeast Dianli University,ChinaProject (2013) supported by the 12th Five-Year Enhancing Innovation Projects of Northeast Dianli University,China
文摘Amino-bacterial cellulose(amino-BC) was prepared by chemical modification of bacterial cellulose(BC).The adsorption characteristics and mechanism of amino-BC were studied.The results show that adsorption data can be fitted well by Langmuir equation and the pseudo-second order kinetics,indicating that the adsorption of amino-BC would obey monolayer molecule adsorption and the main action was chemisorption.Meanwhile,the adsorption process was studied by the Elovich equation and the intra-particle diffusion model,indicating that the absorption characteristics of metal ions on amino-BC is controlled by both film diffusion and particle diffusion.The increase of reaction temperature will accelerate the adsorbing rate because of endothermic reaction.
基金supported by the Pro-gramme for Changjiang Scholars and the Innovative Research Team in Universities of China (PCSIRT0607)by the National Natural Science Foundation of China (30871727+2 种基金 30872037)the National Key Project of Scientific and Technical Supporting Programmes Funded by the Ministry of Science & Technology of China (2006BAD01A15 2006BAD24B04)
文摘A study was conducted to explore the defense response in woody plants after insect herbivory. The activities of two enzymes, lipoxygenase (LOX), a key enzyme ofjasmonate (JA) pathway, and phenylalanine ammonia lyase (PAL), a rate-limiting enzyme of phenyl- propanoid pathway, were measured in the leaves of one-year-old poplar (Populus simonii × P. pyramidalis 'Opera 8277') cuttings after Clostera anachoreta larvae attack. The results show that the increased activities of LOX and PAL were found not only in the leaves wounded by C. anachoreta larvae but also in their tipper systemic leaves, indicating that JA and phenylpropanoid pathways were activated, and the defense response was stimulated systemically. The increase in LOX and PAL activities in neighboring intact poplar cuttings sug- gested that there exists the interplant communication between poplar plants mediated by the herbivore-induced volatiles. Methyl jasmonate (MeJA) was also proved to be an airborne signal to induce defense response in P simonii × P pyramidalis 'Opera 8277' cuttings.