HPR1000 is an advanced nuclear power plant(NPP)with the significant feature of an active and passive safety design philosophy,developed by the China National Nuclear Corporation.On one hand,it is an evolutionary desig...HPR1000 is an advanced nuclear power plant(NPP)with the significant feature of an active and passive safety design philosophy,developed by the China National Nuclear Corporation.On one hand,it is an evolutionary design based on proven technology of the existing pressurized water reactor NPP;on the other hand,it incorporates advanced design features including a 177-fuel-assembly core loaded with CF3 fuel assemblies,active and passive safety systems,comprehensive severe accident prevention and mitigation measures,enhanced protection against external events,and improved emergency response capability.Extensive verification experiments and tests have been performed for critical innovative improvements on passive systems,the reactor core,and the main equipment.The design of HPR1000fulfills the international utility requirements for advanced light water reactors and the latest nuclear safety requirements,and addresses the safety issues relevant to the Fukushima accident.Along with its outstanding safety and economy,HPR1000 provides an excellent and practicable solution for both domestic and international nuclear power markets.展开更多
The stability analysis is one of the chief problems at hydropower stations.The Jinjia Hydropower Station is a significant project in Southwest China.The paper adopts the rigidity limited equilibrium theory and evaluat...The stability analysis is one of the chief problems at hydropower stations.The Jinjia Hydropower Station is a significant project in Southwest China.The paper adopts the rigidity limited equilibrium theory and evaluated stability of the slope body,which will provide the evidences for further detail design.展开更多
The design protection of the base of the Bratsk HPP (Hydroelectric Power Station) dam from filtration coming from the water reservoir included the arrangement of several cement-grout curtains and the system of drain...The design protection of the base of the Bratsk HPP (Hydroelectric Power Station) dam from filtration coming from the water reservoir included the arrangement of several cement-grout curtains and the system of drainage holes in the 2nd and 4th columns. During operation, increased hydrostatic back pressure at the base of the dam was found, which indicated the low efficiency of the base design protection. To reduce back pressure B. E. Vedeneev Hydro Technic Institute proposed the device of “advanced” drainage holes from the cement-grout gallery near the upstream face. The implementation of the proposal in a number of sections of the dam has led to a decrease in back pressure, but affected filtration in the drainage system, increasing it significantly. The article examines filtration features of “advanced” drainage holes and their dependence on the severity of winters. The spread of the practice of “advanced” drainage in other sections of the dam requires caution and further investigations of the nature of filtration.展开更多
Using physical model and numerical simulation techniques, some technical problems were studied systemati- cally, including layout of power station, measures of sediment and floating debris discharging, types of intake...Using physical model and numerical simulation techniques, some technical problems were studied systemati- cally, including layout of power station, measures of sediment and floating debris discharging, types of intake, embed- ded types of spiral ease, layout of underground powerhouse tunnel group and block reinforcement. It was optimal in technique and economy with the arrangement of powerhouse at the dam-toe of both banks + underground powerhouse in the right bank, as well as the intake with a single and small orifice. The sediment and debris problems could be solved with disperse sediment ejection and floating debris discharging holes. With the adoption of techniques for spiral cases such as heat and pressure preservation, cushion layer and combined embedding, the stable operation of generating units can be guaranteed. The arrangement of tailrace tunnel with sloping ceiling was better than that of tailrace surge tank. The technical requirements related to the embedding type of spiral case were proposed. The reinforcement of huge unfavorable blocks was discussed and the new idea for block reinforcement using anti-sliding piles and normal compressive stress of structural plane was put forward.展开更多
文摘HPR1000 is an advanced nuclear power plant(NPP)with the significant feature of an active and passive safety design philosophy,developed by the China National Nuclear Corporation.On one hand,it is an evolutionary design based on proven technology of the existing pressurized water reactor NPP;on the other hand,it incorporates advanced design features including a 177-fuel-assembly core loaded with CF3 fuel assemblies,active and passive safety systems,comprehensive severe accident prevention and mitigation measures,enhanced protection against external events,and improved emergency response capability.Extensive verification experiments and tests have been performed for critical innovative improvements on passive systems,the reactor core,and the main equipment.The design of HPR1000fulfills the international utility requirements for advanced light water reactors and the latest nuclear safety requirements,and addresses the safety issues relevant to the Fukushima accident.Along with its outstanding safety and economy,HPR1000 provides an excellent and practicable solution for both domestic and international nuclear power markets.
文摘The stability analysis is one of the chief problems at hydropower stations.The Jinjia Hydropower Station is a significant project in Southwest China.The paper adopts the rigidity limited equilibrium theory and evaluated stability of the slope body,which will provide the evidences for further detail design.
文摘The design protection of the base of the Bratsk HPP (Hydroelectric Power Station) dam from filtration coming from the water reservoir included the arrangement of several cement-grout curtains and the system of drainage holes in the 2nd and 4th columns. During operation, increased hydrostatic back pressure at the base of the dam was found, which indicated the low efficiency of the base design protection. To reduce back pressure B. E. Vedeneev Hydro Technic Institute proposed the device of “advanced” drainage holes from the cement-grout gallery near the upstream face. The implementation of the proposal in a number of sections of the dam has led to a decrease in back pressure, but affected filtration in the drainage system, increasing it significantly. The article examines filtration features of “advanced” drainage holes and their dependence on the severity of winters. The spread of the practice of “advanced” drainage in other sections of the dam requires caution and further investigations of the nature of filtration.
文摘Using physical model and numerical simulation techniques, some technical problems were studied systemati- cally, including layout of power station, measures of sediment and floating debris discharging, types of intake, embed- ded types of spiral ease, layout of underground powerhouse tunnel group and block reinforcement. It was optimal in technique and economy with the arrangement of powerhouse at the dam-toe of both banks + underground powerhouse in the right bank, as well as the intake with a single and small orifice. The sediment and debris problems could be solved with disperse sediment ejection and floating debris discharging holes. With the adoption of techniques for spiral cases such as heat and pressure preservation, cushion layer and combined embedding, the stable operation of generating units can be guaranteed. The arrangement of tailrace tunnel with sloping ceiling was better than that of tailrace surge tank. The technical requirements related to the embedding type of spiral case were proposed. The reinforcement of huge unfavorable blocks was discussed and the new idea for block reinforcement using anti-sliding piles and normal compressive stress of structural plane was put forward.