This paper addresses the emergence of water security problems in North China with the aim of highlighting key waterresources management and water security issues for the long-term development of North China. Three key...This paper addresses the emergence of water security problems in North China with the aim of highlighting key waterresources management and water security issues for the long-term development of North China. Three key problemsrelated to water resources and security issues in North China in the 21st century are addressed, namely 1) the watercycle under environmental change, 2) agricultural water saving, and 3) water security. Development of internationalresearch related to these issues is also reviewed. The research plan developed recently by the Chinese Academy of Sciences(CAS) is discussed and suggestions on research and development of water resources science in North China are presented.Thanks to focus on experimental catchments and dedicated research stations, a detailed knowledge of the water cycle onNorth China farmland has been compiled. A range of techniques that include isotope tracers has been used to acquirehydrologic data. Much research has been devoted to developing distributed hydrological models at different scales. In thewell irrigation district, five different water saving irrigation regimes have been investigated, and these regimes have hadwidespread application, and reduced water use 60-150 mm while they increased water use efficiency (WUE) by 20%-30%.Furthermore, preventing water pollution is the most essential step to ensure North China’s water security.展开更多
The efficient use of water resources directly affects environmental, social, and economic development; therefore, it has a significant impact on urban populations. A slacks-based measure for data envelopment analysis ...The efficient use of water resources directly affects environmental, social, and economic development; therefore, it has a significant impact on urban populations. A slacks-based measure for data envelopment analysis (SBM-DEA) has been widely used in energy efficiency and environmental efficiency analyses in recent years. Based on this model, data from 316 cities were examined and a category method was employed involving three different sorting techniques to empirically evaluate the efficiency of urban water re- source utilization in China between 2000 and 2012. The overall efficiency (OE) of urban water resource utilization in China was initially low, but has improved over the past decade. The scale efficiency (SE) was higher than the pure technological efficiency (PTE); PTE is a major determining factor of OE, and has had an increasingly significant effect. The efficiency of water resource utilization varied ac- cording to the region, urban scale, and economic function. The OE score for the eastern China was higher than for the rest of the region, and the OE score for the western China was higher than for the central China. The OE score for urban water resource utilization has improved with urban expansion, except in the case of small cities. The SE showed an inverted U-shaped' trend with increasing urban expansion. The OE of urban water utilization in comprehensive functional cities was greater than in economic specialization cities, and was greater in heavy industry specialization cities than in other specialization cities. This study contributes to the field of urban water resource management by examining variations in efficiency with urban ~ezle展开更多
To manage water resources effectively, a multiscale assessment of the vulnerability of water resources on the basis of political boundaries and watersheds is necessary. This study addressed issues on the vulnerability...To manage water resources effectively, a multiscale assessment of the vulnerability of water resources on the basis of political boundaries and watersheds is necessary. This study addressed issues on the vulnerability of water resources and provided a multiscale comparison of spatial heterogeneity under a climate change background. Using improved quantitative evaluation methods of vulnerabil- ity, the Theil index and the Shannon-Weaver index, we evaluated the vulnerability of water resources and its spatial heterogeneity in the Haihe River Basin in four scales, namely, second-class water resource regions (Class II WRRs), third-class water resource regions (Class III WRRs), Province-Class II WRRs, and Province-Class III WRRs. Results show that vulnerability enhances from the north to south in the different scales, and shows obvious spatial heterogeneity instead of moving toward convergence in multiscale assessment results. Among the Class II WRRs, the Tuhai-Majia River is the most vulnerable area, and the vulnerability of the Luanhe River is lower than that of the north of the Haihe River Basin, which in turn is lower than that of the south of the Haihe River Basin. In the scales of Class III WRRs and Province-Class III WRRs, the vulnerability shows obvious spatial heterogeneity and diversity measured by the Theil index and the Shannon-Weaver index. Multiscale vulnerability assessment results based on political boundaries and the watersheds of the Haihe River Basin innovatively provided in this paper are important and useful to characterize the real spatial pattern of the vulnerability of water resources and improve water resource management.展开更多
Under global climate change, drought has become one of the most serious natural hazards, affecting the ecological environment and human life. Drought can be categorized as meteorological, agricultural, hydrological or...Under global climate change, drought has become one of the most serious natural hazards, affecting the ecological environment and human life. Drought can be categorized as meteorological, agricultural, hydrological or socio-economic drought. Among the different categories of drought, hydrological drought, especially streamflow drought, has been given more attention by local governments, researchers and the public in recent years. Identifying the occurrence of streamflow drought and issuing early warning can provide timely information for effective water resources management. In this study, streamflow drought is detected by using the Standardized Runoff Index, whereas meteorological drought is detected by the Standardized Precipitation Index. Comparative analyses of frequency, magnitude, onset and duration are conducted to identify the impact of meteorological drought on streamflow drought. This study focuses on the Jinghe River Basin in Northwest China, mainly providing the following findings. 1) Eleven meteorological droughts and six streamflow droughts were indicated during 1970 and 1990 after pooling using Inter-event time and volume Criterion method. 2) Streamflow drought in the Jinghe River Basin lagged meteorological drought for about 127 days. 3) The frequency of streamflow drought in Jinghe River Basin was less than meteorological drought. However, the average duration of streamflow drought is longer. 4) The magnitude of streamflow drought is greater than meteorological drought. These results not only play an important theoretical role in understanding relationships between different drought categories, but also have practical implications for streamflow drought mitigation and regional water resources management.展开更多
This paper addresses the impact of climate change on the water cycle and resource changes in the Eastern Monsoon Region of China (EMRC). It also represents a summary of the achievements made by the National Key Basi...This paper addresses the impact of climate change on the water cycle and resource changes in the Eastern Monsoon Region of China (EMRC). It also represents a summary of the achievements made by the National Key Basic Research and Development Program (2010CB428400), where the major research focuses are detection and attribution, extreme floods and droughts, and adaptation of water resources management. Preliminary conclusions can be summarized into four points: 1) Water cycling and water resource changes in the EMRC are rather complicated as the region is impacted by natural changes relating to the strong monsoon influence and also by climate change impacts caused by CO2 emissions due to anthropogenic forcing; 2) the rate of natural variability contributing to the influence on precipitation accounts for about 70%, and the rate from anthropogenic forcing accounts for 30% on average in the EMRC. However, with future scenarios of increasing CO2 emissions, the contribution rate from anthropogenic forcing will increase and water resources management will experience greater issues related to the climate change impact; 3) Extreme floods and droughts in the EMRC will be an increasing trend, based on IPCC-AR5 scenarios; 4) Along with rising temperatures of 1 ~C in North China, the agricultural water consumption will increase to about 4% of total water consumption. Therefore, climate change is making a significant impact and will be a risk to the EMRC, which covers almost all of the eight major river basins, such as the Yangtze River, Yellow River, Huaihe River, Haihe River, and Pearl River, and to the South-to-North Water Diversion Project (middle line). To ensure water security, it is urgently necessary to take adaptive countermeasures and reduce the vulnerability of water resources and associated risks.展开更多
Sichuan Basin is located in southwestern China and affected by a complex water vapor (WV) sources. Here, the spatial and temporal patterns of precipitation and extreme events are investigated by six indices of World...Sichuan Basin is located in southwestern China and affected by a complex water vapor (WV) sources. Here, the spatial and temporal patterns of precipitation and extreme events are investigated by six indices of World Meteorology Organization Commission, including annual precipitation total (AP), maximum daily precipitation (Maxld), intensity of rainfall over 1 mm/d (IR1), maximum and mean consecutive dry days (Max CDD, Mean CDD) and coefficient of variance. Based on 24 daily precipitation time series from 1951 to 2o11, Mann-Kendall test is employed to quantify the significant level of these indices, from which the classification of precipitation change and its spatial patterns are obtained. Meanwhile, the probability distributions of these indices are identified by L-moment analysis and the Goodness-of-fit test, and the corresponding values are calculated by theoretical model at different return periods. The results reveal that the western basin displays normal drought: less AP and precipitation intensity while longer drought. The southern basin shows normal increase: larger AP and precipitation intensity but shorter CDD. However, in hilly region of the central basin and the transition zone between basin and mountains, precipitation changes abnormally: increasing both drought (one or both of Mean CDD and MaxCDD) and precipitation intensity (one or both of Maxld and trend of AP is. Probability IR1) no matter what the distribution models also demonstrate the complex patterns: a negative correlation between Maxld and Max CDD in the west (R2≥0.61) while a positive correlation in the east (R2≥0.41) at all return periods. These patterns are induced by the changes in WV sources and the layout of local terrain. The increase of WV in summer and decrease in spring leads to the heavier rainfall and longer drought respectively. The large heat island effect of the basin contributes to a lower temperature in transition zones and more precipitation in the downwind area. These results are helpful in reevaluating the risk regionally and making better decisions on water resources management and disaster prevention.展开更多
Snowmelt is an important component of any snow-fed river system.The Jhelum River is one such transnational mountain river flowing through India and Pakistan.The basin is minimally glacierized and its discharge is larg...Snowmelt is an important component of any snow-fed river system.The Jhelum River is one such transnational mountain river flowing through India and Pakistan.The basin is minimally glacierized and its discharge is largely governed by seasonal snow cover and snowmelt.Therefore,accurate estimation of seasonal snow cover dynamics and snowmeltinduced runoff is important for sustainable water resource management in the region.The present study looks into spatio-temporal variations of snow cover for past decade and stream flow simulation in the Jhelum River basin.Snow cover extent(SCE) was estimated using MODIS(Moderate Resolution Imaging Spectrometer) sensor imageries.Normalized Difference Snow Index(NDSI) algorithm was used to generate multi-temporal time series snow cover maps.The results indicate large variation in snow cover distribution pattern and decreasing trend in different sub-basins of the Jhelum River.The relationship between SCE-temperature,SCE-discharge and discharge-precipitation was analyzed for different seasons and shows strong correlation.For streamflow simulation of the entire Jhelum basin Snow melt Runoff Model(SRM) used.A good correlation was observed between simulated stream flow and in-situ discharge.The monthly discharge contribution from different sub-basins to the total discharge of the Jhelum River was estimated using a modified version of runoff model based on temperature-index approach developed for small watersheds.Stream power - an indicator of the erosive capability of streams was also calculated for different sub-basins.展开更多
An optimization study using a comprehensive 3D, multi-phase, non-isothermal model of a PEM (proton exchange membrane) fuel cell that incorporates significant physical processes and key parameters affecting fuel cell...An optimization study using a comprehensive 3D, multi-phase, non-isothermal model of a PEM (proton exchange membrane) fuel cell that incorporates significant physical processes and key parameters affecting fuel cell performance is presented and discussed in detail. The model accounts for both gas and liquid phase in the same computational domain, and thus allows for the implementation of phase change inside the gas diffusion layers. The model includes the transport of gaseous species, liquid water, protons, energy, and water dissolved in the ion-conducting polymer. Water is assumed to be exchanged among three phases: liquid, vapottr, and dissolved, with equilibrium among these phases being assumed. This model also takes into account convection and diffusion of different species in the channels as well as in the porous gas diffusion layer, heat transfer in the solids as well as in the gases, and electrochemical reactions. The results showed that the present multi-phase model is capable of identifying important parameters for the wetting behaviour of the gas diffusion layers and can be used to identify conditions that might lead to the onset of pore plugging, which has a detrimental effect on the fuel cell performance. This model is used to study the effects of several operating, design, and material parameters on fuel cell performance. Detailed analyses of the fuel cell performance under various operating conditions have been conducted and examined.展开更多
The research on the present situation of soil and water development and utilization in Shiyang River Basin shows that water resources and eco-environment situation in this area are near the edge of collapse. Since the...The research on the present situation of soil and water development and utilization in Shiyang River Basin shows that water resources and eco-environment situation in this area are near the edge of collapse. Since the water crises occurred in the 1970s, problems caused by continuous decrease of water resources have been becoming serious year by year and eco-environment crisis occurred as a consequence. Up to now, 10 380ha of irrigated lands have been abandoned due to sand coverage and water shortage in the basin. Ground water was over exploded in Wuwei and Minqin because of water shortage. Ground water table in many places dropped under 5m (which is the ecology water table level), thus about 3000ha ofElaeagnus angustifolia forest come to dead and another 5800ha become feeble, and wind-drift sand near the oasis become alive. According to the current situation, if water utilization scope was not enlarged, a water transfer volume of 600×10^6m^3/a from other areas will be suitable to keep water resources and eco-environment safety in the basin, and also 70×10^6m^3/a will be left as spare water. Under this condition the water resources and eco-environment of the basin can reach the critical safety line of 2.032×10^6m^3/a; or if 180×10^6m^3 of water can be transferred from other areas, the water resources can reach the safety warning line of 1.732×10^9m^3/a.展开更多
Geological environment effects caused by the control of groundwater exploitation in Jiangyin city are discussed thoroughly, including the dynamic variation of groundwater levels and quality and the development of land...Geological environment effects caused by the control of groundwater exploitation in Jiangyin city are discussed thoroughly, including the dynamic variation of groundwater levels and quality and the development of land sub-sidence and ground fissures. According to the dynamic characteristics of groundwater levels, some advice about groundwater exploitation is offered. Our research will provide a basis for using groundwater resources and the preven- tion of geological disasters in Jiangyin city and the Suzhou-Wuxi-Changzhou area. The following results are deduced from our research. First, groundwater levels vary with the exploitation of groundwater in Jiangyin city and are affected by hydrogeological conditions. The groundwater levels remained rather stable before and after the implementation of control of groundwater exploitation in the northwest of Jiangyin city along the Yangtze River. A suitable level of exploitation should be allowed. In the southeast, the speed of recovery of the groundwater level has been rather rapid after the control of exploitation. We conclude that groundwater might be exploited locally after the groundwater level has recovered. In the southwest, the speed of recovery of the groundwater level is rather slow and exploitation of ground-water should be prohibited. Second, groundwater quality is stable in Jiangyin city and the contents of the main chemical indices of groundwater varied only slightly before and after the control of exploitation. Third, after controlling the exploitation, the speed of land subsidence has clearly slowed down and the development of ground fissures has been controlled effectively.展开更多
Directional drilling has been established in the coal industry as a viable means of gas drainage, exploration and water management. But the environment in and around coal seams is not always conducive to stable condit...Directional drilling has been established in the coal industry as a viable means of gas drainage, exploration and water management. But the environment in and around coal seams is not always conducive to stable conditions while drilling and borehole stability after the drilling has been completed. This paper identifies the conditions which cause unstable drilling conditions and the various means which are used to attempt to manage or bypass those conditions. Ultimately, equipment does become bogged in these adverse environments and requires recovery by over-coring.展开更多
Based on an analysis of our research results and the main problems relating to urban rainwater treatment, we propose a new approach to urban rainwater management in China. The necessity and feasibility of such a new a...Based on an analysis of our research results and the main problems relating to urban rainwater treatment, we propose a new approach to urban rainwater management in China. The necessity and feasibility of such a new approach are discussed. From an ecological point of view all components of the global system, including residents living in cities, have the same right to enjoy rainwater. Therefore, urban rainwater should neither be simply drained as waste water, nor be completely harvested as a kind of resource. The objective of this new approach is to maintain the natural hydrological cycle in urban areas during urbanization. When necessary, it could also be used to regulate the amount of runoff, evaporation and infiltration in a city in order to rehabilitate the hydrological cycle given the local conditions. Three basic principles should be adopted in rainwater management, i.e., separation of rainfall from sewage, limited utilization and small and decentralized facilities. Four methods can be used for urban rainwater management: rainwater harvest, rainwater infiltration, rainwater storage and rainwater pipes. The natural hydrological cycle in urban areas could be rehabilitated through rainwater management, which is of great importance for sustainable development of our cities.展开更多
Traditional irrigation, as part of the ancient agricultural practices in northern Ethiopia (Tigray), has persisted for long time since 500 B.C., while many newly introduced irrigation projects have usually failed th...Traditional irrigation, as part of the ancient agricultural practices in northern Ethiopia (Tigray), has persisted for long time since 500 B.C., while many newly introduced irrigation projects have usually failed there. The main objective of this study is thus to investigate the peculiarities pertinent to irrigation management and those having contributed for the persistence of traditional irrigation practices for a long period of time. The experience gained from such areas can definitely help make irrigation management system of new irrigation schemes sustainable. Betmera-Hiwane, one of the ancient traditional irrigation areas in Tigray region, was selected for the field study. Direct observations through field visits accompanied by interviews to farmers, local officials, local knowledgeable individuals and higher officials were made. After analyzing the collected primary and secondary information, the main peculiarities that contributed to the persistence of traditional irrigation areas were identified, and they are: constructed local rules, the presence of communally locally designed hydraulic control structures, ownership feeling of the irrigators and accountability of water distributors to the irrigation management, the culture for mobilizing communal resources and the culture of self-initiating local water management strategies.展开更多
This paper mainly discusses the feasibility to establish economic policy systems for control and management of agricultural nonpoint source pollution in China. The current situation of serious agricultural nonpoint so...This paper mainly discusses the feasibility to establish economic policy systems for control and management of agricultural nonpoint source pollution in China. The current situation of serious agricultural nonpoint source pollution in China is described firstly. Based on the environmental policy and economics theories, the system of economic policies for control and management of agricultural nonpoint source pollution is designed in this paper. This system includes the policy objective, the designing principle and the methods. The key issues include pollution charge, inputs tax for restriction, subsides for induction and incentive, effluent trading for least cost reduction. The emphases are optimized on inputs tax and agricultural chemical tax permit under complete information, as well as sub-optimized inputs tax under incomplete information, subsides for farm due to positive and negative externality. The functions and suitability of the policies are also analyzed in the paper. According to the field experiment results and other relating economic data in watershed of the Chaohe River, Beijing, some economic approaches to reducing agricultural nonpoint source pollution are proposed. The main idea is to encourage and support the farmers to improve their farming way, and to implement the policy of castigating charge simultaneously. The feasibility of the policies are analyzed with consideration of economy, technology and institution. It is concluded that the economic policies are necessary and feasible.展开更多
To date,the Three Gorges Project is the largest hydro junction in the world.It is the key project for the integrated water resource management and development of the Changjiang River.The technology of the project,with...To date,the Three Gorges Project is the largest hydro junction in the world.It is the key project for the integrated water resource management and development of the Changjiang River.The technology of the project,with its huge scale and comprehensive benefits,is extremely complicated,and the design difficulty is greater than that of any other hydro project in the world.A series of new design theories and methods have been proposed and applied in the design and research process.Many key technological problems regarding hydraulic structures have been overcome,such as a gravity dam with multi-layer large discharge orifices,a hydropower station of giant generating units,and a giant continual multi-step ship lock with a high water head.展开更多
基金the Knowledge Innovation Key Project of the Chinese Academy of Sciences (Nos. KZCX2-SW-317/CX10G-E01-08 and KZCX1-09-02) and the National Natural Science Foundation of China (No. 50279049).
文摘This paper addresses the emergence of water security problems in North China with the aim of highlighting key waterresources management and water security issues for the long-term development of North China. Three key problemsrelated to water resources and security issues in North China in the 21st century are addressed, namely 1) the watercycle under environmental change, 2) agricultural water saving, and 3) water security. Development of internationalresearch related to these issues is also reviewed. The research plan developed recently by the Chinese Academy of Sciences(CAS) is discussed and suggestions on research and development of water resources science in North China are presented.Thanks to focus on experimental catchments and dedicated research stations, a detailed knowledge of the water cycle onNorth China farmland has been compiled. A range of techniques that include isotope tracers has been used to acquirehydrologic data. Much research has been devoted to developing distributed hydrological models at different scales. In thewell irrigation district, five different water saving irrigation regimes have been investigated, and these regimes have hadwidespread application, and reduced water use 60-150 mm while they increased water use efficiency (WUE) by 20%-30%.Furthermore, preventing water pollution is the most essential step to ensure North China’s water security.
基金Key Research Program of Chinese Academy of Sciences(No.KZZD-EW-06-03-03)
文摘The efficient use of water resources directly affects environmental, social, and economic development; therefore, it has a significant impact on urban populations. A slacks-based measure for data envelopment analysis (SBM-DEA) has been widely used in energy efficiency and environmental efficiency analyses in recent years. Based on this model, data from 316 cities were examined and a category method was employed involving three different sorting techniques to empirically evaluate the efficiency of urban water re- source utilization in China between 2000 and 2012. The overall efficiency (OE) of urban water resource utilization in China was initially low, but has improved over the past decade. The scale efficiency (SE) was higher than the pure technological efficiency (PTE); PTE is a major determining factor of OE, and has had an increasingly significant effect. The efficiency of water resource utilization varied ac- cording to the region, urban scale, and economic function. The OE score for the eastern China was higher than for the rest of the region, and the OE score for the western China was higher than for the central China. The OE score for urban water resource utilization has improved with urban expansion, except in the case of small cities. The SE showed an inverted U-shaped' trend with increasing urban expansion. The OE of urban water utilization in comprehensive functional cities was greater than in economic specialization cities, and was greater in heavy industry specialization cities than in other specialization cities. This study contributes to the field of urban water resource management by examining variations in efficiency with urban ~ezle
基金Under the auspices of National Natural Science Foundation of China(No.51279140,51249010)National Basic Research Program of China(No.2010CB428406)
文摘To manage water resources effectively, a multiscale assessment of the vulnerability of water resources on the basis of political boundaries and watersheds is necessary. This study addressed issues on the vulnerability of water resources and provided a multiscale comparison of spatial heterogeneity under a climate change background. Using improved quantitative evaluation methods of vulnerabil- ity, the Theil index and the Shannon-Weaver index, we evaluated the vulnerability of water resources and its spatial heterogeneity in the Haihe River Basin in four scales, namely, second-class water resource regions (Class II WRRs), third-class water resource regions (Class III WRRs), Province-Class II WRRs, and Province-Class III WRRs. Results show that vulnerability enhances from the north to south in the different scales, and shows obvious spatial heterogeneity instead of moving toward convergence in multiscale assessment results. Among the Class II WRRs, the Tuhai-Majia River is the most vulnerable area, and the vulnerability of the Luanhe River is lower than that of the north of the Haihe River Basin, which in turn is lower than that of the south of the Haihe River Basin. In the scales of Class III WRRs and Province-Class III WRRs, the vulnerability shows obvious spatial heterogeneity and diversity measured by the Theil index and the Shannon-Weaver index. Multiscale vulnerability assessment results based on political boundaries and the watersheds of the Haihe River Basin innovatively provided in this paper are important and useful to characterize the real spatial pattern of the vulnerability of water resources and improve water resource management.
基金Under the auspices of National Natural Science Foundation of China(No.41171403,41301586)China Postdoctoral Science Foundation(No.2013M540599,2014T70731)Program for New Century Excellent Talents in University(No.NCET-08-0057)
文摘Under global climate change, drought has become one of the most serious natural hazards, affecting the ecological environment and human life. Drought can be categorized as meteorological, agricultural, hydrological or socio-economic drought. Among the different categories of drought, hydrological drought, especially streamflow drought, has been given more attention by local governments, researchers and the public in recent years. Identifying the occurrence of streamflow drought and issuing early warning can provide timely information for effective water resources management. In this study, streamflow drought is detected by using the Standardized Runoff Index, whereas meteorological drought is detected by the Standardized Precipitation Index. Comparative analyses of frequency, magnitude, onset and duration are conducted to identify the impact of meteorological drought on streamflow drought. This study focuses on the Jinghe River Basin in Northwest China, mainly providing the following findings. 1) Eleven meteorological droughts and six streamflow droughts were indicated during 1970 and 1990 after pooling using Inter-event time and volume Criterion method. 2) Streamflow drought in the Jinghe River Basin lagged meteorological drought for about 127 days. 3) The frequency of streamflow drought in Jinghe River Basin was less than meteorological drought. However, the average duration of streamflow drought is longer. 4) The magnitude of streamflow drought is greater than meteorological drought. These results not only play an important theoretical role in understanding relationships between different drought categories, but also have practical implications for streamflow drought mitigation and regional water resources management.
基金Acknowledgment This study was supported by the National Key Basic Research Development Program Project (2010CB428400) and the Natural Science Foundation of China (51279140).
文摘This paper addresses the impact of climate change on the water cycle and resource changes in the Eastern Monsoon Region of China (EMRC). It also represents a summary of the achievements made by the National Key Basic Research and Development Program (2010CB428400), where the major research focuses are detection and attribution, extreme floods and droughts, and adaptation of water resources management. Preliminary conclusions can be summarized into four points: 1) Water cycling and water resource changes in the EMRC are rather complicated as the region is impacted by natural changes relating to the strong monsoon influence and also by climate change impacts caused by CO2 emissions due to anthropogenic forcing; 2) the rate of natural variability contributing to the influence on precipitation accounts for about 70%, and the rate from anthropogenic forcing accounts for 30% on average in the EMRC. However, with future scenarios of increasing CO2 emissions, the contribution rate from anthropogenic forcing will increase and water resources management will experience greater issues related to the climate change impact; 3) Extreme floods and droughts in the EMRC will be an increasing trend, based on IPCC-AR5 scenarios; 4) Along with rising temperatures of 1 ~C in North China, the agricultural water consumption will increase to about 4% of total water consumption. Therefore, climate change is making a significant impact and will be a risk to the EMRC, which covers almost all of the eight major river basins, such as the Yangtze River, Yellow River, Huaihe River, Haihe River, and Pearl River, and to the South-to-North Water Diversion Project (middle line). To ensure water security, it is urgently necessary to take adaptive countermeasures and reduce the vulnerability of water resources and associated risks.
基金funded by open funding of Guizhou Provincial Key Laboratory of Public Big Data(Guizhou University, Grant No.2017BDKFJJ021)Special Science and Technology Funding of Guizhou Province Water Resources Department (KT201707)+1 种基金Guizhou Province Science and Technology Joint Founding (LH [2017]7617)China Postdoctoral Science Foundation (Grant No.2016M5 92671)
文摘Sichuan Basin is located in southwestern China and affected by a complex water vapor (WV) sources. Here, the spatial and temporal patterns of precipitation and extreme events are investigated by six indices of World Meteorology Organization Commission, including annual precipitation total (AP), maximum daily precipitation (Maxld), intensity of rainfall over 1 mm/d (IR1), maximum and mean consecutive dry days (Max CDD, Mean CDD) and coefficient of variance. Based on 24 daily precipitation time series from 1951 to 2o11, Mann-Kendall test is employed to quantify the significant level of these indices, from which the classification of precipitation change and its spatial patterns are obtained. Meanwhile, the probability distributions of these indices are identified by L-moment analysis and the Goodness-of-fit test, and the corresponding values are calculated by theoretical model at different return periods. The results reveal that the western basin displays normal drought: less AP and precipitation intensity while longer drought. The southern basin shows normal increase: larger AP and precipitation intensity but shorter CDD. However, in hilly region of the central basin and the transition zone between basin and mountains, precipitation changes abnormally: increasing both drought (one or both of Mean CDD and MaxCDD) and precipitation intensity (one or both of Maxld and trend of AP is. Probability IR1) no matter what the distribution models also demonstrate the complex patterns: a negative correlation between Maxld and Max CDD in the west (R2≥0.61) while a positive correlation in the east (R2≥0.41) at all return periods. These patterns are induced by the changes in WV sources and the layout of local terrain. The increase of WV in summer and decrease in spring leads to the heavier rainfall and longer drought respectively. The large heat island effect of the basin contributes to a lower temperature in transition zones and more precipitation in the downwind area. These results are helpful in reevaluating the risk regionally and making better decisions on water resources management and disaster prevention.
文摘Snowmelt is an important component of any snow-fed river system.The Jhelum River is one such transnational mountain river flowing through India and Pakistan.The basin is minimally glacierized and its discharge is largely governed by seasonal snow cover and snowmelt.Therefore,accurate estimation of seasonal snow cover dynamics and snowmeltinduced runoff is important for sustainable water resource management in the region.The present study looks into spatio-temporal variations of snow cover for past decade and stream flow simulation in the Jhelum River basin.Snow cover extent(SCE) was estimated using MODIS(Moderate Resolution Imaging Spectrometer) sensor imageries.Normalized Difference Snow Index(NDSI) algorithm was used to generate multi-temporal time series snow cover maps.The results indicate large variation in snow cover distribution pattern and decreasing trend in different sub-basins of the Jhelum River.The relationship between SCE-temperature,SCE-discharge and discharge-precipitation was analyzed for different seasons and shows strong correlation.For streamflow simulation of the entire Jhelum basin Snow melt Runoff Model(SRM) used.A good correlation was observed between simulated stream flow and in-situ discharge.The monthly discharge contribution from different sub-basins to the total discharge of the Jhelum River was estimated using a modified version of runoff model based on temperature-index approach developed for small watersheds.Stream power - an indicator of the erosive capability of streams was also calculated for different sub-basins.
基金Project supported by the Postgraduate Programs of the International Technological University (ITU), London, UK
文摘An optimization study using a comprehensive 3D, multi-phase, non-isothermal model of a PEM (proton exchange membrane) fuel cell that incorporates significant physical processes and key parameters affecting fuel cell performance is presented and discussed in detail. The model accounts for both gas and liquid phase in the same computational domain, and thus allows for the implementation of phase change inside the gas diffusion layers. The model includes the transport of gaseous species, liquid water, protons, energy, and water dissolved in the ion-conducting polymer. Water is assumed to be exchanged among three phases: liquid, vapottr, and dissolved, with equilibrium among these phases being assumed. This model also takes into account convection and diffusion of different species in the channels as well as in the porous gas diffusion layer, heat transfer in the solids as well as in the gases, and electrochemical reactions. The results showed that the present multi-phase model is capable of identifying important parameters for the wetting behaviour of the gas diffusion layers and can be used to identify conditions that might lead to the onset of pore plugging, which has a detrimental effect on the fuel cell performance. This model is used to study the effects of several operating, design, and material parameters on fuel cell performance. Detailed analyses of the fuel cell performance under various operating conditions have been conducted and examined.
文摘The research on the present situation of soil and water development and utilization in Shiyang River Basin shows that water resources and eco-environment situation in this area are near the edge of collapse. Since the water crises occurred in the 1970s, problems caused by continuous decrease of water resources have been becoming serious year by year and eco-environment crisis occurred as a consequence. Up to now, 10 380ha of irrigated lands have been abandoned due to sand coverage and water shortage in the basin. Ground water was over exploded in Wuwei and Minqin because of water shortage. Ground water table in many places dropped under 5m (which is the ecology water table level), thus about 3000ha ofElaeagnus angustifolia forest come to dead and another 5800ha become feeble, and wind-drift sand near the oasis become alive. According to the current situation, if water utilization scope was not enlarged, a water transfer volume of 600×10^6m^3/a from other areas will be suitable to keep water resources and eco-environment safety in the basin, and also 70×10^6m^3/a will be left as spare water. Under this condition the water resources and eco-environment of the basin can reach the critical safety line of 2.032×10^6m^3/a; or if 180×10^6m^3 of water can be transferred from other areas, the water resources can reach the safety warning line of 1.732×10^9m^3/a.
基金Projects 2002CB412702 supported by the Special Funds for Major State Basic Research Projects of China and KZCX2-YW-113the Special Funds ofResearch Innovation Projects of CAS
文摘Geological environment effects caused by the control of groundwater exploitation in Jiangyin city are discussed thoroughly, including the dynamic variation of groundwater levels and quality and the development of land sub-sidence and ground fissures. According to the dynamic characteristics of groundwater levels, some advice about groundwater exploitation is offered. Our research will provide a basis for using groundwater resources and the preven- tion of geological disasters in Jiangyin city and the Suzhou-Wuxi-Changzhou area. The following results are deduced from our research. First, groundwater levels vary with the exploitation of groundwater in Jiangyin city and are affected by hydrogeological conditions. The groundwater levels remained rather stable before and after the implementation of control of groundwater exploitation in the northwest of Jiangyin city along the Yangtze River. A suitable level of exploitation should be allowed. In the southeast, the speed of recovery of the groundwater level has been rather rapid after the control of exploitation. We conclude that groundwater might be exploited locally after the groundwater level has recovered. In the southwest, the speed of recovery of the groundwater level is rather slow and exploitation of ground-water should be prohibited. Second, groundwater quality is stable in Jiangyin city and the contents of the main chemical indices of groundwater varied only slightly before and after the control of exploitation. Third, after controlling the exploitation, the speed of land subsidence has clearly slowed down and the development of ground fissures has been controlled effectively.
文摘Directional drilling has been established in the coal industry as a viable means of gas drainage, exploration and water management. But the environment in and around coal seams is not always conducive to stable conditions while drilling and borehole stability after the drilling has been completed. This paper identifies the conditions which cause unstable drilling conditions and the various means which are used to attempt to manage or bypass those conditions. Ultimately, equipment does become bogged in these adverse environments and requires recovery by over-coring.
基金Projects 40371113 supported by the National Natural Science Foundation of China and OF060096Young Foundation of China University of Mining &Technology
文摘Based on an analysis of our research results and the main problems relating to urban rainwater treatment, we propose a new approach to urban rainwater management in China. The necessity and feasibility of such a new approach are discussed. From an ecological point of view all components of the global system, including residents living in cities, have the same right to enjoy rainwater. Therefore, urban rainwater should neither be simply drained as waste water, nor be completely harvested as a kind of resource. The objective of this new approach is to maintain the natural hydrological cycle in urban areas during urbanization. When necessary, it could also be used to regulate the amount of runoff, evaporation and infiltration in a city in order to rehabilitate the hydrological cycle given the local conditions. Three basic principles should be adopted in rainwater management, i.e., separation of rainfall from sewage, limited utilization and small and decentralized facilities. Four methods can be used for urban rainwater management: rainwater harvest, rainwater infiltration, rainwater storage and rainwater pipes. The natural hydrological cycle in urban areas could be rehabilitated through rainwater management, which is of great importance for sustainable development of our cities.
文摘Traditional irrigation, as part of the ancient agricultural practices in northern Ethiopia (Tigray), has persisted for long time since 500 B.C., while many newly introduced irrigation projects have usually failed there. The main objective of this study is thus to investigate the peculiarities pertinent to irrigation management and those having contributed for the persistence of traditional irrigation practices for a long period of time. The experience gained from such areas can definitely help make irrigation management system of new irrigation schemes sustainable. Betmera-Hiwane, one of the ancient traditional irrigation areas in Tigray region, was selected for the field study. Direct observations through field visits accompanied by interviews to farmers, local officials, local knowledgeable individuals and higher officials were made. After analyzing the collected primary and secondary information, the main peculiarities that contributed to the persistence of traditional irrigation areas were identified, and they are: constructed local rules, the presence of communally locally designed hydraulic control structures, ownership feeling of the irrigators and accountability of water distributors to the irrigation management, the culture for mobilizing communal resources and the culture of self-initiating local water management strategies.
基金Underthe auspicesofK ey TeacherFoundation ofM inistry ofEducation ofC hina (N o.G G -830-10082-1518),Projecton Science and Technology ofBeijing M unicipalEducation C om m ission (N o.K M 200510028012)
文摘This paper mainly discusses the feasibility to establish economic policy systems for control and management of agricultural nonpoint source pollution in China. The current situation of serious agricultural nonpoint source pollution in China is described firstly. Based on the environmental policy and economics theories, the system of economic policies for control and management of agricultural nonpoint source pollution is designed in this paper. This system includes the policy objective, the designing principle and the methods. The key issues include pollution charge, inputs tax for restriction, subsides for induction and incentive, effluent trading for least cost reduction. The emphases are optimized on inputs tax and agricultural chemical tax permit under complete information, as well as sub-optimized inputs tax under incomplete information, subsides for farm due to positive and negative externality. The functions and suitability of the policies are also analyzed in the paper. According to the field experiment results and other relating economic data in watershed of the Chaohe River, Beijing, some economic approaches to reducing agricultural nonpoint source pollution are proposed. The main idea is to encourage and support the farmers to improve their farming way, and to implement the policy of castigating charge simultaneously. The feasibility of the policies are analyzed with consideration of economy, technology and institution. It is concluded that the economic policies are necessary and feasible.
文摘To date,the Three Gorges Project is the largest hydro junction in the world.It is the key project for the integrated water resource management and development of the Changjiang River.The technology of the project,with its huge scale and comprehensive benefits,is extremely complicated,and the design difficulty is greater than that of any other hydro project in the world.A series of new design theories and methods have been proposed and applied in the design and research process.Many key technological problems regarding hydraulic structures have been overcome,such as a gravity dam with multi-layer large discharge orifices,a hydropower station of giant generating units,and a giant continual multi-step ship lock with a high water head.