Knowledge of phosphorus (P) behavior in long-term fertilized soils is essential for programming fertilization practices and for sustaining environmental quality. The long-term (1984-1997) effects of various fertil...Knowledge of phosphorus (P) behavior in long-term fertilized soils is essential for programming fertilization practices and for sustaining environmental quality. The long-term (1984-1997) effects of various fertilization treatments on P changes and sorption isotherms as well as the relationship of soil properties to P sorption and P forms were evaluated in an Ustic Isohumisol, a calcareous soil, on the Loess Plateau, China. Compared to 1984, after 13 years of crop production, total soil P in the no-P treatments (control and N treatment) decreased by 5%-7%, but in the phosphorus fertilizer alone (P), nitrogen and phosphorus fertilizers in combination (NP), manure alone (M), and nitrogen and phosphorus fertilizers and manure in combination (NPM) treatments, it increased by 22%, 19%, 28%, and 58%, respectively. Residual fertilizer P was found mainly in NH4Ac-soluble P (Cas-P), followed by NaHCO3-soluble P (NaHCO3-P), and NH4F-soluble P (Al-P). Phosphorus sorption in the soils with different fertilization practices fit the Langmuir equations. Phosphorus sorption capacity in the no-P treatments increased, whereas it decreased in the P-included treatments (P, NP, and NPM treatments). Phosphorus sorption maximum (Qm) was significantly and negatively correlated to inorganic P including NaHCO3-P, Cas-P, NaOH-Na2CO3-soluble P (Fe-P), and Al-P (P ≤ 0.01). Moreover, long-term fertilization increased soil organic carbon in the NP, M, and NPM treatments and decreased pH in the NP and NPM treatments. Thus, the ability of the soil to release sorbed P to the environment increased under long-term P fertilization.展开更多
Analysis of phospholipid fatty acids (PLFAs) was used to estimate the microbial community structures of eight Chinese red soils with different fertility levels and land use histories. The total amounts of PLFAs in the...Analysis of phospholipid fatty acids (PLFAs) was used to estimate the microbial community structures of eight Chinese red soils with different fertility levels and land use histories. The total amounts of PLFAs in the soils were significantly correlated with soil organic carbon, total nitrogen, microbial biomass C and basal respiration, indicating that total PLFA was closely related to fertility and sustainability in these highly weathered soils. Soils for the eroded wasteland were rich in Gram-positive species. When the eroded soils were planted with citrus trees, the soil microbial population had changed little in 4 years but took up to 8-12 years before it reached a significantly different population. Multivariate analysis of PLFAs demonstrated that land use history and plant cover type had a significant impact on microbial community structure. However, the difference of soil microbial community structure in the paddy field compared to other land uses was not larger than expected in this experiment.展开更多
基金the National Basic Research Program of China(No.2005CB121102)the Knowledge Innovation Program of the Chinese Academy of Sciences(No.KZCX2-YW-424-2)the West Star Foundation of the Chinese Academy of Sciences
文摘Knowledge of phosphorus (P) behavior in long-term fertilized soils is essential for programming fertilization practices and for sustaining environmental quality. The long-term (1984-1997) effects of various fertilization treatments on P changes and sorption isotherms as well as the relationship of soil properties to P sorption and P forms were evaluated in an Ustic Isohumisol, a calcareous soil, on the Loess Plateau, China. Compared to 1984, after 13 years of crop production, total soil P in the no-P treatments (control and N treatment) decreased by 5%-7%, but in the phosphorus fertilizer alone (P), nitrogen and phosphorus fertilizers in combination (NP), manure alone (M), and nitrogen and phosphorus fertilizers and manure in combination (NPM) treatments, it increased by 22%, 19%, 28%, and 58%, respectively. Residual fertilizer P was found mainly in NH4Ac-soluble P (Cas-P), followed by NaHCO3-soluble P (NaHCO3-P), and NH4F-soluble P (Al-P). Phosphorus sorption in the soils with different fertilization practices fit the Langmuir equations. Phosphorus sorption capacity in the no-P treatments increased, whereas it decreased in the P-included treatments (P, NP, and NPM treatments). Phosphorus sorption maximum (Qm) was significantly and negatively correlated to inorganic P including NaHCO3-P, Cas-P, NaOH-Na2CO3-soluble P (Fe-P), and Al-P (P ≤ 0.01). Moreover, long-term fertilization increased soil organic carbon in the NP, M, and NPM treatments and decreased pH in the NP and NPM treatments. Thus, the ability of the soil to release sorbed P to the environment increased under long-term P fertilization.
基金Project supported by the Science and Technology Development Bureau of European Union (CⅠ1-CT93-0009), by the National Key Basic
文摘Analysis of phospholipid fatty acids (PLFAs) was used to estimate the microbial community structures of eight Chinese red soils with different fertility levels and land use histories. The total amounts of PLFAs in the soils were significantly correlated with soil organic carbon, total nitrogen, microbial biomass C and basal respiration, indicating that total PLFA was closely related to fertility and sustainability in these highly weathered soils. Soils for the eroded wasteland were rich in Gram-positive species. When the eroded soils were planted with citrus trees, the soil microbial population had changed little in 4 years but took up to 8-12 years before it reached a significantly different population. Multivariate analysis of PLFAs demonstrated that land use history and plant cover type had a significant impact on microbial community structure. However, the difference of soil microbial community structure in the paddy field compared to other land uses was not larger than expected in this experiment.