A novel integrated approach to remove the free alkalis and stabilize solid-phase alkalinity by controlling the release of Ca from desulfurization gypsum was developed.The combination of recycled FeCl_(3)solution and E...A novel integrated approach to remove the free alkalis and stabilize solid-phase alkalinity by controlling the release of Ca from desulfurization gypsum was developed.The combination of recycled FeCl_(3)solution and EDTA activated desulfurization gypsum lowered the bauxite residue pH to 7.20.Moreover,it also improved the residual Ca state,with its contribution to the total exchangeable cations increased(68%-92%).Notably,the slow release of exchangeable Ca introduced through modified desulfurization gypsum induced a phase transition of the alkaline minerals.This treatment stabilized the dealkalization effect of bauxite residue via reducing its overall acid neutralization capacity in abating pH rebound.Hence,this approach can provide guidance for effectively utilizing desulfurization gypsum to achieve stable regulation of alkalinity in bauxite residue.展开更多
The synergistic impact of mechanical ball milling and flue gas desulfurization(FGD)gypsum on the dealkalization of bauxite residue was investigated through integrated analyses of solution chemistry,mineralogy,and micr...The synergistic impact of mechanical ball milling and flue gas desulfurization(FGD)gypsum on the dealkalization of bauxite residue was investigated through integrated analyses of solution chemistry,mineralogy,and microtopography.The results showed a significant decrease in Na_(2)O content(>30 wt.%)of FGD gypsum-treated bauxite residue after 30 min of mechanical ball milling.Mechanical ball milling resulted in differentiation of the elemental distribution,modification of the minerals in crystalline structure,and promotion in the dissolution of alkaline minerals,thus enhancing the acid neutralization capacity of bauxite residue.5 wt.%FGD gypsum combined with 30 min mechanical ball milling was optimal for the dealkalization of bauxite residue.展开更多
The pozzolanic activity of coal gangue, which is calcining at 500 to 1 000 ℃, differs distinctly. The simplex-centroid design with upper and lower bounds of component proportion is adopted to study the compressive st...The pozzolanic activity of coal gangue, which is calcining at 500 to 1 000 ℃, differs distinctly. The simplex-centroid design with upper and lower bounds of component proportion is adopted to study the compressive strength of mortars made with ternary blends of cement, activated coal gangue and fly ash. Based on the results of a minimum of seven design points, three special cubic polynomial models are used to establish the strength predicating equations at different ages for mortars. Five experimental checkpoints were also designed to verify the precision of the equations. The most frequent errors of the predicted values are within 3%. A simple and practical way is provided for determining the optimal proportion of two admixtures when they are used in concrete.展开更多
A field investigation was performed to study the content, speciation and mobility of vanadium, as well as microbial response in soil from a stone coal smelting district in Hunan province of China. The results showed t...A field investigation was performed to study the content, speciation and mobility of vanadium, as well as microbial response in soil from a stone coal smelting district in Hunan province of China. The results showed that the contents of soil V ranged from 168 to 1538 mg/kg, which exceeded the maximum permissible value of Canadian soil quality for V. The mean soil V content from wasteland area reached 1421 mg/kg, and those from the areas related with slag heap, ore pile and smelting center were 380, 260 and 225 mg/kg, respectively. Based on the results of the modified BCR sequential extraction procedure, V contents in the mobile fractions varied from 19.2 to 637 mg/kg accounting for 7.4%-42.3% of total V, and those of V(+5) species were between 21.9 and 534.0 mg/kg. Soil enzyme activity and microbial basal respiration were adversely affected by high level of soil V. More attention should be paid to soil V pollution and potential hazardous surrounding the stone coal smelting district.展开更多
Mechanism functions and kinetic parameters of AlOOH(boehmite or diaspore) dissolving in sodium hydroxide solution were researched.The mixture of boehmite or diaspore and caustic solution was scanned by high-pressure...Mechanism functions and kinetic parameters of AlOOH(boehmite or diaspore) dissolving in sodium hydroxide solution were researched.The mixture of boehmite or diaspore and caustic solution was scanned by high-pressure differential scanning calorimetry(DSC) instrument with heating rate of 10 ℃/min,and differential equation method was used to analyse the DSC curves,combining with iterative method and linear least square method.The most probable mechanism functions for both boehmite or diaspore and caustic solution reactions were logically selected from 30 types of non-isothermal kinetics differential equations,according to the calculated results obtained by Matlab program.The most probable differential mechanism function of boehmite dissolving in caustic solution is f(α)=1-α,which reveals the first-order reaction with apparent activation energy of 79.178 kJ/mol and the preexponential constant 1.031×108 s-1.The function,f(α)=2(1-α)3/2,can describe the dissolution of diaspore sample in sodium hydroxide solution.The calculated results of kinetic parameters are apparent activation energy of 73.858 kJ/mol,preexponential constant of 5.752×107 s-1 and reaction order of 1.5.展开更多
A method of activation roasting followed by acid leaching using titanium slag was introduced to prepare Ti-rich material. The effects of HaPO4 dosage, roasting temperature, and roasting time on TiO2 grade were investi...A method of activation roasting followed by acid leaching using titanium slag was introduced to prepare Ti-rich material. The effects of HaPO4 dosage, roasting temperature, and roasting time on TiO2 grade were investigated. A Ti-rich material containing 88.54% TiO2, 0.42% (CaO+MgO) was obtained when finely ground titanium slag was roasted with 7.5% H3PO4 at 1000 ℃ for 2 h, followed by a two-stage leaching in boiling dilute sulfuric acid for 2 h. The XRD patterns show that the product is titanium dioxide with a rutile structure. Mechanism studies show that structures of anosovite solid solution and silicate minerals are destroyed in the roasting process. As a result, titanium components in titanium slag are transformed into TiO2 (futile) while impurities are transformed into acid-soluble phosphate and quartz.展开更多
The growth characteristics of petroleum-degrader BS-8(Bacillus sp.) and the factors influencing its biosurfactant production were tested; the biosurfactant releasing mode of BS-8 was speculated by measuring OD600, s...The growth characteristics of petroleum-degrader BS-8(Bacillus sp.) and the factors influencing its biosurfactant production were tested; the biosurfactant releasing mode of BS-8 was speculated by measuring OD600, surface tension and oil displacement of fermentation broth; and the effects of carbon source, nitrogen source, temperature, p H, and Na Cl concentration on biosurfactant production by BS-8 were observed in this study. The results showed that the biosurfactant releasing mode of BS-8 was growth-correlated, the surface tension of BS-8 fermentation broth declined with the total bacteria increasing, and the oil displacement was positive correlated with biosurfactant content in fermentation broth; and the optimal culture conditions for effective biosurfactant production included: glucose as carbon source,yeast extract as nitrogen source, Na Cl concentration of 2%, p H of 7.0 and temperature at 30 ℃.展开更多
The arginine-modified and europium-doped hydroxyapatite nanoparticles(HAP-Eu) were synthesized by hydrothermal synthesis.The prepared nanoparticles were characterized by transmission electron microscopy(TEM),X-ray...The arginine-modified and europium-doped hydroxyapatite nanoparticles(HAP-Eu) were synthesized by hydrothermal synthesis.The prepared nanoparticles were characterized by transmission electron microscopy(TEM),X-ray diffractometry(XRD),Fourier transform infrared(FTIR) and zeta potential analyzer.The cell viability of HAP-Eu was tested by image flow cytometry.The results indicated that HAP-Eu is short column shapes and its size is approximately 100 nm,its zeta potential is about 30.10 mV at pH of 7.5,and shows no cytotoxicity in human epithelial cells and endothelial cells.展开更多
The experimental results of flue gas desulphurization with caustic lime andhydrated lime activated by water spraying in a desulphurization reactor are presented. The effectsof Ca/S molar ratio, approach to saturation ...The experimental results of flue gas desulphurization with caustic lime andhydrated lime activated by water spraying in a desulphurization reactor are presented. The effectsof Ca/S molar ratio, approach to saturation of flue gas, SO_2 concentration and gas velocity onsulfur retention efficiency and calcium utilization rate are investigated. Desulphurizationcharacteristics of the two sorbents are compared. The mechanism of improving desulphurizationefficiency by water spraying is analyzed. The results show that the activities of two sorbents areimproved obviously by humidification with water spray and the caustic lime has better applicationprospect because of cheaper cost.展开更多
The adsorption behavior and mechanism of Bi(Ⅲ) ions on the rutile-water interface were investigated through micro-flotation, Zeta potential measurement, adsorption amount measurement and X-ray photoelectron spectro...The adsorption behavior and mechanism of Bi(Ⅲ) ions on the rutile-water interface were investigated through micro-flotation, Zeta potential measurement, adsorption amount measurement and X-ray photoelectron spectroscopy(XPS). According to the results of micro-flotation, Bi(Ⅲ) ions could largely improve the rutile flotation recovery(from 62% to 91%), and they could increase the activating sites and reduce the competitive adsorption between nonyl hydroxamic acid negative ions and OH-ions, which determined that Bi(Ⅲ) ions were capable of activating rutile flotation. The adsorption of Bi(Ⅲ) ions onto the rutile surface led to the shift of Zeta potential into the positive direction, which was good for the adsorption of nonyl hydroxamic acid anions. In addition, the results of XPS indicated that the chemical environment around Ti atom had not changed before and after the adsorption of Bi(Ⅲ) ions. Based on the adsorption mechanism of Bi(Ⅲ) ions, it was deduced that firstly Bi(Ⅲ) ions occupied the vacancies of the original Ca^2+, Mg^2+ and Fe^2+ ions on the rutile surface; secondly Bi(Ⅲ) ions covered on the rutile surface in the form of hydroxides.展开更多
In order to relieve the equipment corrosion,reduce chlorine and increase phosphorus contents in leaching solution,theleaching behavior of potassium from phosphorus-potassium associated ore in the mixed acids of hydroc...In order to relieve the equipment corrosion,reduce chlorine and increase phosphorus contents in leaching solution,theleaching behavior of potassium from phosphorus-potassium associated ore in the mixed acids of hydrochloric acid and phosphoricacid was investigated.The effects of various factors,such as mass fraction of hydrochloric acid,solid-to-liquid ratio,material ratio(CaF2dosage(g)/mass of ore(g))and leaching temperature were comprehensively studied.It was found that the dissolution fractionof potassium can reach more than86%under the optimum conditions of leaching temperature95°C,HCl concentration10%,leaching time6h,solid/liquid ratio1:5,and material ratio0.1.In addition,the leaching kinetics of potassium was successfullymodeled by a semi-empirical kinetic model based on the classic shrinking core model.The data showed that the leaching process ofpotassium was controlled by the product layer diffusion and the apparent activation energy for the process was found to be54.67kJ/mol over the temperature range from65to95°C.展开更多
From 2007 to 2009, large-scale blooms of green algae (the so-called "green tides") occurred every summer in the Yellow Sea, China. In June 2008, huge amounts of floating green algae accumulated along the coa...From 2007 to 2009, large-scale blooms of green algae (the so-called "green tides") occurred every summer in the Yellow Sea, China. In June 2008, huge amounts of floating green algae accumulated along the coast of Qingdao and led to mass mortality of cultured abalone and sea cucumber. However, the mechanism for the mass mortality of cultured animals remains undetermined. This study examined the toxic effects of Ulva (Enteromorpha) prolifera, the causative species of green tides in the Yellow Sea during the last three years. The acute toxicity of fresh culture medium and decomposing algal effluent of U. prolifera to the cultured abalone Haliotis discus hannai were tested. It was found that both fresh culture medium and decomposing algal effluent had toxic effects to abalone, and decomposing algal effluent was more toxic than fresh culture medium. The acute toxicity of decomposing algal effluent could be attributed to the ammonia and sulfide presented in the effluent, as well as the hypoxia caused by the decomposition process.展开更多
In this study, the ethanol extract of pomegranate seed was prepared and its antioxidant activities were investigated. It was found the total phenolic content in the extract was as high as 41.791 mg GAE/g. And the extr...In this study, the ethanol extract of pomegranate seed was prepared and its antioxidant activities were investigated. It was found the total phenolic content in the extract was as high as 41.791 mg GAE/g. And the extract showed high antioxidant activity measured as scavenging of DPPH radicals, hydroxyl radicals. It also exhibited strong antioxidant activity in reducing power and Rancimat test. These results demonstrated Pomegranate seeds could serve as a new source of natural antioxidant.展开更多
Understanding the performance of reactive oxygen species(ROS)in photocatalysis is pivotal for advancing their application in environmental remediation.However,techniques for investigating the generation and transforma...Understanding the performance of reactive oxygen species(ROS)in photocatalysis is pivotal for advancing their application in environmental remediation.However,techniques for investigating the generation and transformation mechanism of ROS have been largely overlooked.In this study,considering g‐C3N4 to be a model photocatalyst,we have focused on the ROS generation and transformation for efficient photocatalytic NO removal.It was found that the key to improving the photocatalysis performance was to enhance the ROS transformation from·O2^-to·OH,elevating the production of·OH.The ROS directly participate in the photocatalytic NO removal and tailor the rate‐determining step,which is required to overcome the high activation energy of the intermediate conversion.Using a closely combined experimental and theoretical method,this work provides a new protocol to investigate the ROS behavior on g‐C3N4 for effective NO removal and clarifies the reaction mechanism at the atomic level,which enriches the understanding of ROS in photocatalytic environmental remediation.展开更多
Activated carbon(AC)particles sandwiched reduced graphene oxide sheets(rGO)film has been successfully fabricated via a facile self-assemble approach.The as-formed AC/rGO film is self-standing,flexible and mechanically...Activated carbon(AC)particles sandwiched reduced graphene oxide sheets(rGO)film has been successfully fabricated via a facile self-assemble approach.The as-formed AC/rGO film is self-standing,flexible and mechanically robust,allowing to be transferred to any substrate on demand without rupture.Since AC particles effectively suppressed the restacking of the rGO sheet,AC/rGO film exhibits loose layer-by-layer stacking structures with various gaps between AC particles and rGO sheets,which is different from compact structures of pure graphene films.The as-formed gaps provide fast diffusion channels for electrolyte ions and enhanced accessible surface area of rGO.Therefore,the AC/rGO electrode delivers improved electrochemical performance over the voltage range of 0.0−3.0 V.This work offers a promising strategy to design free-standing supercapacitor electrodes based on traditional nanocarbon materials.展开更多
A series of Co-based oxide catalysts were prepared by calcining hydrotalcite precursors in different atmospheres and studied for HCHO catalytic oxidation. The N2-calcined catalyst exhibits enhanced HCHO oxidation and ...A series of Co-based oxide catalysts were prepared by calcining hydrotalcite precursors in different atmospheres and studied for HCHO catalytic oxidation. The N2-calcined catalyst exhibits enhanced HCHO oxidation and superior stability. On the basis of H2-TPR, X-ray photoelectron spectroscopy, and Raman characterizations, this can be ascribed to better redox ability, octahedrally coordinated Co2+ ions derived from the CoO phase, and other surface oxygen species, such as O2– or O–. The extra octahedrally coordinated Co2+ ions may reside in a more open framework site than the inactive tetrahedrally coordinated Co2+ ions. This species of Co2+ can easily make contact with oxygen and oxidize. The surface oxygen species, along with the octahedrally coordinated Co2+ ions, and a part of the Co3+ species constitute the Co2+-oxygen species-Co3+ sites, which enhance the catalytic activities. According to DRIFTS, Co2+-oxygen species-Co3+ makes oxidation of HCHO and conversion of DOM to formate easier.展开更多
In this work we investigated the effect of nitric acid concentration on the pore structure,surface chemistry and liquid phase adsorption of olive stone based activated carbon prepared by mixing process using phosphori...In this work we investigated the effect of nitric acid concentration on the pore structure,surface chemistry and liquid phase adsorption of olive stone based activated carbon prepared by mixing process using phosphoric acid and steam as activating agents.Chemicals and textural characterization show that the increase of HNO3concentration increases considerably the total acidic groups but decreases specific surface area and pore volume.The study of adsorption in aqueous solutions of two organics,phenol and methylene blue,on raw and oxidized activated carbon indicates that the treatment of mixed activated carbon with different concentrations of nitric acid improves the adsorbent capacity for methylene blue at HNO3concentrations less or equal to 2 mol·L 1,while it has a negative effect on phenol adsorption.展开更多
Mg-based alloys received significant attention for temporary implant applications while, their applications have been limited by high degradation rate. Therefore, silver-zeolite doped hydroxyapatite(Ag-Zeo-HAp) coat...Mg-based alloys received significant attention for temporary implant applications while, their applications have been limited by high degradation rate. Therefore, silver-zeolite doped hydroxyapatite(Ag-Zeo-HAp) coating was synthesized on Ti O2-coated Mg alloy by physical vapour deposition(PVD) assisted electrodeposition technique to decrease the degradation rate of Mg alloy. X-ray diffraction(XRD) analysis and field emission scanning electron microscopy(FE-SEM) images showed the formation of a uniform and compact layer of Ag-Zeo-HAp with a thickness of 15 μm on the Ti O2 film with a thickness of 1 μm. The potentiodynamic polarization(PDP) and electrochemical impedance spectroscopy(EIS) tests indicated that corrosion resistance of Mg-Ca alloy was considerably increased by the Ag-Zeo-HAp coating. The bioactivity test in the simulated body fluid(SBF) solution showed that a dense and homogeneous bonelike apatite layer was formed on the Ag-Zeo-HAp surface after 14 d. Investigation of antibacterial activity via disk diffusion and spread plate methods showed that the Ag-Zeo-HAp coating had a significantly larger inhibition zone(3.86 mm) towards Escherichia coli(E. coli) compared with the Ti O2-coated Mg alloy(2.61 mm). The Ag-Zeo-HAp coating showed high antibacterial performance, good bioactivity, and high corrosion resistance which make it a perfect coating material for biomedical applications.展开更多
Mechanical activation was used to improve the extraction of chromium in molten NaOH.It is observed that the extraction ratio reaches 97% after leaching for 200 min when chromite ore is mechanically activated for 10 mi...Mechanical activation was used to improve the extraction of chromium in molten NaOH.It is observed that the extraction ratio reaches 97% after leaching for 200 min when chromite ore is mechanically activated for 10 min,but only 34% if not activated.Mechanical activation can decrease the particle size,increase the surface area,and enhance the lattice distortion.Further,the mechanisms for mechanical activation were exposed.The results show that the mechanical activation mainly focuses on chromite ore particle size decrease and the lattice distortion.The formation of aggregation weakens the strengthening effect of mechanical activation for releasing high surface energy.展开更多
基金supported by the National Natural Science Foundation of China(No.42307521)the China Postdoctoral Science Foundation(No.2023M742934)。
文摘A novel integrated approach to remove the free alkalis and stabilize solid-phase alkalinity by controlling the release of Ca from desulfurization gypsum was developed.The combination of recycled FeCl_(3)solution and EDTA activated desulfurization gypsum lowered the bauxite residue pH to 7.20.Moreover,it also improved the residual Ca state,with its contribution to the total exchangeable cations increased(68%-92%).Notably,the slow release of exchangeable Ca introduced through modified desulfurization gypsum induced a phase transition of the alkaline minerals.This treatment stabilized the dealkalization effect of bauxite residue via reducing its overall acid neutralization capacity in abating pH rebound.Hence,this approach can provide guidance for effectively utilizing desulfurization gypsum to achieve stable regulation of alkalinity in bauxite residue.
基金the National Natural Science Foundation of China(Nos.42177391,42077379)the Natural Science Foundation of Hunan Province,China(No.2022JJ20060)+1 种基金the Central South University Innovation-driven Research Program,China(No.2023CXQD065)the Fundamental Research Funds for the Central Universities of Central South University,China(No.2023ZZTS0800).
文摘The synergistic impact of mechanical ball milling and flue gas desulfurization(FGD)gypsum on the dealkalization of bauxite residue was investigated through integrated analyses of solution chemistry,mineralogy,and microtopography.The results showed a significant decrease in Na_(2)O content(>30 wt.%)of FGD gypsum-treated bauxite residue after 30 min of mechanical ball milling.Mechanical ball milling resulted in differentiation of the elemental distribution,modification of the minerals in crystalline structure,and promotion in the dissolution of alkaline minerals,thus enhancing the acid neutralization capacity of bauxite residue.5 wt.%FGD gypsum combined with 30 min mechanical ball milling was optimal for the dealkalization of bauxite residue.
基金The National Basic Research Program of China (973Program)(No2000CB610703)
文摘The pozzolanic activity of coal gangue, which is calcining at 500 to 1 000 ℃, differs distinctly. The simplex-centroid design with upper and lower bounds of component proportion is adopted to study the compressive strength of mortars made with ternary blends of cement, activated coal gangue and fly ash. Based on the results of a minimum of seven design points, three special cubic polynomial models are used to establish the strength predicating equations at different ages for mortars. Five experimental checkpoints were also designed to verify the precision of the equations. The most frequent errors of the predicted values are within 3%. A simple and practical way is provided for determining the optimal proportion of two admixtures when they are used in concrete.
基金Project(41201492)supported by the National Natural Science Foundation of China
文摘A field investigation was performed to study the content, speciation and mobility of vanadium, as well as microbial response in soil from a stone coal smelting district in Hunan province of China. The results showed that the contents of soil V ranged from 168 to 1538 mg/kg, which exceeded the maximum permissible value of Canadian soil quality for V. The mean soil V content from wasteland area reached 1421 mg/kg, and those from the areas related with slag heap, ore pile and smelting center were 380, 260 and 225 mg/kg, respectively. Based on the results of the modified BCR sequential extraction procedure, V contents in the mobile fractions varied from 19.2 to 637 mg/kg accounting for 7.4%-42.3% of total V, and those of V(+5) species were between 21.9 and 534.0 mg/kg. Soil enzyme activity and microbial basal respiration were adversely affected by high level of soil V. More attention should be paid to soil V pollution and potential hazardous surrounding the stone coal smelting district.
基金Project(2007BC13504)supported by the National Basic Research Program of ChinaProject(20050145029)supported by Research Fund for the Doctoral Program of Higher EducationProject(2005221012)supported by the Science and Technology Talents Fund for Excellent Youth of Liaoning Province,China
文摘Mechanism functions and kinetic parameters of AlOOH(boehmite or diaspore) dissolving in sodium hydroxide solution were researched.The mixture of boehmite or diaspore and caustic solution was scanned by high-pressure differential scanning calorimetry(DSC) instrument with heating rate of 10 ℃/min,and differential equation method was used to analyse the DSC curves,combining with iterative method and linear least square method.The most probable mechanism functions for both boehmite or diaspore and caustic solution reactions were logically selected from 30 types of non-isothermal kinetics differential equations,according to the calculated results obtained by Matlab program.The most probable differential mechanism function of boehmite dissolving in caustic solution is f(α)=1-α,which reveals the first-order reaction with apparent activation energy of 79.178 kJ/mol and the preexponential constant 1.031×108 s-1.The function,f(α)=2(1-α)3/2,can describe the dissolution of diaspore sample in sodium hydroxide solution.The calculated results of kinetic parameters are apparent activation energy of 73.858 kJ/mol,preexponential constant of 5.752×107 s-1 and reaction order of 1.5.
基金Project(NCET-10-0834) supported by the Program for New Century Excellent Talents in University,China
文摘A method of activation roasting followed by acid leaching using titanium slag was introduced to prepare Ti-rich material. The effects of HaPO4 dosage, roasting temperature, and roasting time on TiO2 grade were investigated. A Ti-rich material containing 88.54% TiO2, 0.42% (CaO+MgO) was obtained when finely ground titanium slag was roasted with 7.5% H3PO4 at 1000 ℃ for 2 h, followed by a two-stage leaching in boiling dilute sulfuric acid for 2 h. The XRD patterns show that the product is titanium dioxide with a rutile structure. Mechanism studies show that structures of anosovite solid solution and silicate minerals are destroyed in the roasting process. As a result, titanium components in titanium slag are transformed into TiO2 (futile) while impurities are transformed into acid-soluble phosphate and quartz.
基金Supported by Basic and Cutting-edge Technique Research of Henan Province(152300410092)Key Program in Science and Technology of Education Department of Henan Province(15A210020,15B180002,15B180016)~~
文摘The growth characteristics of petroleum-degrader BS-8(Bacillus sp.) and the factors influencing its biosurfactant production were tested; the biosurfactant releasing mode of BS-8 was speculated by measuring OD600, surface tension and oil displacement of fermentation broth; and the effects of carbon source, nitrogen source, temperature, p H, and Na Cl concentration on biosurfactant production by BS-8 were observed in this study. The results showed that the biosurfactant releasing mode of BS-8 was growth-correlated, the surface tension of BS-8 fermentation broth declined with the total bacteria increasing, and the oil displacement was positive correlated with biosurfactant content in fermentation broth; and the optimal culture conditions for effective biosurfactant production included: glucose as carbon source,yeast extract as nitrogen source, Na Cl concentration of 2%, p H of 7.0 and temperature at 30 ℃.
基金Project (81071869) supported by the National Natural Science Foundation of China Project (2009637526) supported by China Scholarship Council (CSC Program)Project (2010QZZD006) supported by the Key Program of Central South University Advancing Front Foundation
文摘The arginine-modified and europium-doped hydroxyapatite nanoparticles(HAP-Eu) were synthesized by hydrothermal synthesis.The prepared nanoparticles were characterized by transmission electron microscopy(TEM),X-ray diffractometry(XRD),Fourier transform infrared(FTIR) and zeta potential analyzer.The cell viability of HAP-Eu was tested by image flow cytometry.The results indicated that HAP-Eu is short column shapes and its size is approximately 100 nm,its zeta potential is about 30.10 mV at pH of 7.5,and shows no cytotoxicity in human epithelial cells and endothelial cells.
文摘The experimental results of flue gas desulphurization with caustic lime andhydrated lime activated by water spraying in a desulphurization reactor are presented. The effectsof Ca/S molar ratio, approach to saturation of flue gas, SO_2 concentration and gas velocity onsulfur retention efficiency and calcium utilization rate are investigated. Desulphurizationcharacteristics of the two sorbents are compared. The mechanism of improving desulphurizationefficiency by water spraying is analyzed. The results show that the activities of two sorbents areimproved obviously by humidification with water spray and the caustic lime has better applicationprospect because of cheaper cost.
基金Project(51474254)supported by the National Natural Science Foundation of ChinaProject(2013M531813)supported by the China Postdoctoral Science Foundation+1 种基金Project(2016zzts111)supported by the Independent Exploration and Innovation Program of Central South University,ChinaProject(CSUZC201715)supported by Open-End Fund for the Valuable and Precision Instruments of Central South University,China
文摘The adsorption behavior and mechanism of Bi(Ⅲ) ions on the rutile-water interface were investigated through micro-flotation, Zeta potential measurement, adsorption amount measurement and X-ray photoelectron spectroscopy(XPS). According to the results of micro-flotation, Bi(Ⅲ) ions could largely improve the rutile flotation recovery(from 62% to 91%), and they could increase the activating sites and reduce the competitive adsorption between nonyl hydroxamic acid negative ions and OH-ions, which determined that Bi(Ⅲ) ions were capable of activating rutile flotation. The adsorption of Bi(Ⅲ) ions onto the rutile surface led to the shift of Zeta potential into the positive direction, which was good for the adsorption of nonyl hydroxamic acid anions. In addition, the results of XPS indicated that the chemical environment around Ti atom had not changed before and after the adsorption of Bi(Ⅲ) ions. Based on the adsorption mechanism of Bi(Ⅲ) ions, it was deduced that firstly Bi(Ⅲ) ions occupied the vacancies of the original Ca^2+, Mg^2+ and Fe^2+ ions on the rutile surface; secondly Bi(Ⅲ) ions covered on the rutile surface in the form of hydroxides.
基金Project(51274153) supported by the National Natural Science Foundation of ChinaProjects(2011CDA120,2015CFB523) supported by the Natural Science Foundation of Hubei Province of China+2 种基金Project(G201510) supported by the State Key Laboratory of Refractories and Metallurgy(Wuhan University of Science and Technology)ChinaProject(K201454) supported by the Youths Science Foundation of Wuhan Institute of Technology,China
文摘In order to relieve the equipment corrosion,reduce chlorine and increase phosphorus contents in leaching solution,theleaching behavior of potassium from phosphorus-potassium associated ore in the mixed acids of hydrochloric acid and phosphoricacid was investigated.The effects of various factors,such as mass fraction of hydrochloric acid,solid-to-liquid ratio,material ratio(CaF2dosage(g)/mass of ore(g))and leaching temperature were comprehensively studied.It was found that the dissolution fractionof potassium can reach more than86%under the optimum conditions of leaching temperature95°C,HCl concentration10%,leaching time6h,solid/liquid ratio1:5,and material ratio0.1.In addition,the leaching kinetics of potassium was successfullymodeled by a semi-empirical kinetic model based on the classic shrinking core model.The data showed that the leaching process ofpotassium was controlled by the product layer diffusion and the apparent activation energy for the process was found to be54.67kJ/mol over the temperature range from65to95°C.
基金Supported by the National Key Technology R&D Program (No. 2008BAC49B01)the National Basic Research Program of China (973 Program) (No. 2010CB428705)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No. 40821004)
文摘From 2007 to 2009, large-scale blooms of green algae (the so-called "green tides") occurred every summer in the Yellow Sea, China. In June 2008, huge amounts of floating green algae accumulated along the coast of Qingdao and led to mass mortality of cultured abalone and sea cucumber. However, the mechanism for the mass mortality of cultured animals remains undetermined. This study examined the toxic effects of Ulva (Enteromorpha) prolifera, the causative species of green tides in the Yellow Sea during the last three years. The acute toxicity of fresh culture medium and decomposing algal effluent of U. prolifera to the cultured abalone Haliotis discus hannai were tested. It was found that both fresh culture medium and decomposing algal effluent had toxic effects to abalone, and decomposing algal effluent was more toxic than fresh culture medium. The acute toxicity of decomposing algal effluent could be attributed to the ammonia and sulfide presented in the effluent, as well as the hypoxia caused by the decomposition process.
基金Supported by Foundation for Science and Technology Research Program of Henanprovince(132102110007102102210194)+1 种基金Natural Science Foundation of EducationDepartment in Henan province(2011A550006)Program for Innovative Research Team(in Science and Technology)in University of Henan Province(13IRTSTHN006)
文摘In this study, the ethanol extract of pomegranate seed was prepared and its antioxidant activities were investigated. It was found the total phenolic content in the extract was as high as 41.791 mg GAE/g. And the extract showed high antioxidant activity measured as scavenging of DPPH radicals, hydroxyl radicals. It also exhibited strong antioxidant activity in reducing power and Rancimat test. These results demonstrated Pomegranate seeds could serve as a new source of natural antioxidant.
基金the National Natural Science Foundation of China(51508356)Science and Technology Support Program of Sichuan Province(2014GZ0213,2016GZ0045)Youth Project in Science and Technology Innovation Program of Sichuan Province(17-YCG053)~~
文摘Understanding the performance of reactive oxygen species(ROS)in photocatalysis is pivotal for advancing their application in environmental remediation.However,techniques for investigating the generation and transformation mechanism of ROS have been largely overlooked.In this study,considering g‐C3N4 to be a model photocatalyst,we have focused on the ROS generation and transformation for efficient photocatalytic NO removal.It was found that the key to improving the photocatalysis performance was to enhance the ROS transformation from·O2^-to·OH,elevating the production of·OH.The ROS directly participate in the photocatalytic NO removal and tailor the rate‐determining step,which is required to overcome the high activation energy of the intermediate conversion.Using a closely combined experimental and theoretical method,this work provides a new protocol to investigate the ROS behavior on g‐C3N4 for effective NO removal and clarifies the reaction mechanism at the atomic level,which enriches the understanding of ROS in photocatalytic environmental remediation.
基金Project(21673102)supported by the National Natural Science Foundation of ChinaProjects(LY18B010006,LQ19B030005)supported by the Natural Science Foundation of Zhejiang Province,China。
文摘Activated carbon(AC)particles sandwiched reduced graphene oxide sheets(rGO)film has been successfully fabricated via a facile self-assemble approach.The as-formed AC/rGO film is self-standing,flexible and mechanically robust,allowing to be transferred to any substrate on demand without rupture.Since AC particles effectively suppressed the restacking of the rGO sheet,AC/rGO film exhibits loose layer-by-layer stacking structures with various gaps between AC particles and rGO sheets,which is different from compact structures of pure graphene films.The as-formed gaps provide fast diffusion channels for electrolyte ions and enhanced accessible surface area of rGO.Therefore,the AC/rGO electrode delivers improved electrochemical performance over the voltage range of 0.0−3.0 V.This work offers a promising strategy to design free-standing supercapacitor electrodes based on traditional nanocarbon materials.
基金support by the National Natural Science Foundation of China(91544227,21777166)the National Key R&D Program of China(2016YFC0202202)~~
文摘A series of Co-based oxide catalysts were prepared by calcining hydrotalcite precursors in different atmospheres and studied for HCHO catalytic oxidation. The N2-calcined catalyst exhibits enhanced HCHO oxidation and superior stability. On the basis of H2-TPR, X-ray photoelectron spectroscopy, and Raman characterizations, this can be ascribed to better redox ability, octahedrally coordinated Co2+ ions derived from the CoO phase, and other surface oxygen species, such as O2– or O–. The extra octahedrally coordinated Co2+ ions may reside in a more open framework site than the inactive tetrahedrally coordinated Co2+ ions. This species of Co2+ can easily make contact with oxygen and oxidize. The surface oxygen species, along with the octahedrally coordinated Co2+ ions, and a part of the Co3+ species constitute the Co2+-oxygen species-Co3+ sites, which enhance the catalytic activities. According to DRIFTS, Co2+-oxygen species-Co3+ makes oxidation of HCHO and conversion of DOM to formate easier.
文摘In this work we investigated the effect of nitric acid concentration on the pore structure,surface chemistry and liquid phase adsorption of olive stone based activated carbon prepared by mixing process using phosphoric acid and steam as activating agents.Chemicals and textural characterization show that the increase of HNO3concentration increases considerably the total acidic groups but decreases specific surface area and pore volume.The study of adsorption in aqueous solutions of two organics,phenol and methylene blue,on raw and oxidized activated carbon indicates that the treatment of mixed activated carbon with different concentrations of nitric acid improves the adsorbent capacity for methylene blue at HNO3concentrations less or equal to 2 mol·L 1,while it has a negative effect on phenol adsorption.
文摘Mg-based alloys received significant attention for temporary implant applications while, their applications have been limited by high degradation rate. Therefore, silver-zeolite doped hydroxyapatite(Ag-Zeo-HAp) coating was synthesized on Ti O2-coated Mg alloy by physical vapour deposition(PVD) assisted electrodeposition technique to decrease the degradation rate of Mg alloy. X-ray diffraction(XRD) analysis and field emission scanning electron microscopy(FE-SEM) images showed the formation of a uniform and compact layer of Ag-Zeo-HAp with a thickness of 15 μm on the Ti O2 film with a thickness of 1 μm. The potentiodynamic polarization(PDP) and electrochemical impedance spectroscopy(EIS) tests indicated that corrosion resistance of Mg-Ca alloy was considerably increased by the Ag-Zeo-HAp coating. The bioactivity test in the simulated body fluid(SBF) solution showed that a dense and homogeneous bonelike apatite layer was formed on the Ag-Zeo-HAp surface after 14 d. Investigation of antibacterial activity via disk diffusion and spread plate methods showed that the Ag-Zeo-HAp coating had a significantly larger inhibition zone(3.86 mm) towards Escherichia coli(E. coli) compared with the Ti O2-coated Mg alloy(2.61 mm). The Ag-Zeo-HAp coating showed high antibacterial performance, good bioactivity, and high corrosion resistance which make it a perfect coating material for biomedical applications.
基金Project(2009AA06XK1485430) supported by the National Hi-tech Research and Development Program of ChinaProject(2007CB613501) supported by the National Basic Research Program of China
文摘Mechanical activation was used to improve the extraction of chromium in molten NaOH.It is observed that the extraction ratio reaches 97% after leaching for 200 min when chromite ore is mechanically activated for 10 min,but only 34% if not activated.Mechanical activation can decrease the particle size,increase the surface area,and enhance the lattice distortion.Further,the mechanisms for mechanical activation were exposed.The results show that the mechanical activation mainly focuses on chromite ore particle size decrease and the lattice distortion.The formation of aggregation weakens the strengthening effect of mechanical activation for releasing high surface energy.