Heavy summer rainfall induces significant soil erosion and shallow landslide activity on the loess hillslopes of the Xining Basin at the northeast margin of the Qinghai-Tibet Plateau. This study examines the mechanica...Heavy summer rainfall induces significant soil erosion and shallow landslide activity on the loess hillslopes of the Xining Basin at the northeast margin of the Qinghai-Tibet Plateau. This study examines the mechanical effects of five native shrubs that can be used to reduce shallow landslide activity. We measured single root tensile resistance and shear resistance, root anatomical structure and direct shear and triaxial shear for soil without roots and five root- soil composite systems. Results show that Atriplex canescens (Pursh) Nutt. possessed the strongest roots, followed by Caragana korshinskii Kom., Zygophyllum xanthoxylon (Bunge) Maxim., Nitraria tangutorum Bobr. and Lycium chinense Mill. Single root strength and shear resistance relationships with root diameter are characterized by power or exponential relations, consistent with the Mohr- Coulomb law. Root mechanical strength reflects their anatomical structure, especially the percentage of phloem and xylem cells, and the degree and speed of periderm lignifications. The cohesion force of root- soil composite systems is notably higher than that of soil without roots, with increasing amplitudes of cohesion force for A. canescens, C. korshinskii, Z. xanthoxylon, N. tangutorurn and L. chinense of 75.9%, 75.1%, 36.2%, 24.6% and 17.0 % respectively. When subjected to shear forces, the soil without root samples show much greater lateral deformation thanthe root-soil composite systems, reflecting the restraining effects of roots. Findings from this paper indicate that efforts to reduce shallow landslides in this region by enhancing root reinforcement will be achieved most effectively using A. canescens and C. korshinskii.展开更多
In 2011, petroleum exploration of shallow marine deposits Carboniferous and volcanic tuff reservoir re- alized breakthroughs at Chepaizi slope in the western margin of Junggar Basin. Pal 61 well, with 855.7 949.6 m se...In 2011, petroleum exploration of shallow marine deposits Carboniferous and volcanic tuff reservoir re- alized breakthroughs at Chepaizi slope in the western margin of Junggar Basin. Pal 61 well, with 855.7 949.6 m section, in the conventional test oil obtained 6 t/d industrial oil flow. The surface viscosity is 390 mPa. s (50 ℃). The marine deposit of Carboniferous are deep oil source rocks and high-quality reservoir. Magma volcanic activity provides the basis for volcanic reservoir development and distribution. The weathering crust and secondary cracks developed volcanic tuff by strong rock weathering and dissolution of organic acids which has become top quality reservoir. Deep Permian oil-gas migrated and accumulated to high parts along Hong-Che fault belt and stratigraphic unconformity stripping. Permian and Triassic volcanic rocks or dense mudstone sedimentary cover as a regional seal for the late Carboniferous oil-gas to save critically. The seismic pre-stack time migration processing technologies for the problem of poor inner structures of Carboniferous were developed. Response of volcanic rock seismic and logging are obvious. The application imaging logging and nuclear magnetic technology achieved the qualitative identification and quantification of fracture description.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant No.41162010)Excellent Talents in University of New Century by Ministry of Education of the People's Republic of China(Grant No.NCET-04-G983)International Science & Technology Cooperation Program of China(Grant No.2011DFG93160)
文摘Heavy summer rainfall induces significant soil erosion and shallow landslide activity on the loess hillslopes of the Xining Basin at the northeast margin of the Qinghai-Tibet Plateau. This study examines the mechanical effects of five native shrubs that can be used to reduce shallow landslide activity. We measured single root tensile resistance and shear resistance, root anatomical structure and direct shear and triaxial shear for soil without roots and five root- soil composite systems. Results show that Atriplex canescens (Pursh) Nutt. possessed the strongest roots, followed by Caragana korshinskii Kom., Zygophyllum xanthoxylon (Bunge) Maxim., Nitraria tangutorum Bobr. and Lycium chinense Mill. Single root strength and shear resistance relationships with root diameter are characterized by power or exponential relations, consistent with the Mohr- Coulomb law. Root mechanical strength reflects their anatomical structure, especially the percentage of phloem and xylem cells, and the degree and speed of periderm lignifications. The cohesion force of root- soil composite systems is notably higher than that of soil without roots, with increasing amplitudes of cohesion force for A. canescens, C. korshinskii, Z. xanthoxylon, N. tangutorurn and L. chinense of 75.9%, 75.1%, 36.2%, 24.6% and 17.0 % respectively. When subjected to shear forces, the soil without root samples show much greater lateral deformation thanthe root-soil composite systems, reflecting the restraining effects of roots. Findings from this paper indicate that efforts to reduce shallow landslides in this region by enhancing root reinforcement will be achieved most effectively using A. canescens and C. korshinskii.
基金National Planed Major S&T Projects(No.2011ZX05002-002)Scientific Research Project of Sinopec(No.P03011)Key Technology Tacking Project,Shengli Oilfield Company,Sinopec(No.YKK0808)
文摘In 2011, petroleum exploration of shallow marine deposits Carboniferous and volcanic tuff reservoir re- alized breakthroughs at Chepaizi slope in the western margin of Junggar Basin. Pal 61 well, with 855.7 949.6 m section, in the conventional test oil obtained 6 t/d industrial oil flow. The surface viscosity is 390 mPa. s (50 ℃). The marine deposit of Carboniferous are deep oil source rocks and high-quality reservoir. Magma volcanic activity provides the basis for volcanic reservoir development and distribution. The weathering crust and secondary cracks developed volcanic tuff by strong rock weathering and dissolution of organic acids which has become top quality reservoir. Deep Permian oil-gas migrated and accumulated to high parts along Hong-Che fault belt and stratigraphic unconformity stripping. Permian and Triassic volcanic rocks or dense mudstone sedimentary cover as a regional seal for the late Carboniferous oil-gas to save critically. The seismic pre-stack time migration processing technologies for the problem of poor inner structures of Carboniferous were developed. Response of volcanic rock seismic and logging are obvious. The application imaging logging and nuclear magnetic technology achieved the qualitative identification and quantification of fracture description.