The turbidity maximum zone(TMZ) is one of the most important regions in an estuary.However,the high concentration of suspended material makes it difficult to measure the partial pressure of CO_2(pCO_2) in these region...The turbidity maximum zone(TMZ) is one of the most important regions in an estuary.However,the high concentration of suspended material makes it difficult to measure the partial pressure of CO_2(pCO_2) in these regions.Therefore,very little data is available on the pCO_2 levels in TMZs.To relatively accurately evaluate the CO_2 flux in an example estuary,we studied the TMZ and surrounding area in the Changjiang(Yangtze) River estuary.From seasonal cruises during February,August,November 2010,and May 2012,the pCO_2 in the TMZ and surrounding area was calculated from pH and total alkalinity(TA)measured in situ,from which the CO_2 flux was calculated.Overall,the TMZ and surrounding area acted as a source of atmosphere CO_2 in February and November,and as a sink in May and August.The average FCO_2was-9,-16,5,and 5 mmol/(m^2·d) in May,August,November,and February,respectively.The TMZ's role as a source or sink of atmosphere CO_2 was quite different to the outer estuary.In the TMZ and surrounding area,suspended matter,phytoplankton,and pH were the main factors controlling the FCO_2,but here the influence of temperature,salinity,and total alkalinity on the FCO_2 was weak.Organic carbon decomposition in suspended matter was the main reason for the region acting as a CO_2 source in winter,and phytoplankton production was the main reason the region was a CO_2 sink in summer.展开更多
Based on the principle of conservative matter removal in estuary,a new method is proposed for estimating the ratio of sediment resuspension in estuaries with fine suspended sediments in the turbidity maximum zone(TMZ)...Based on the principle of conservative matter removal in estuary,a new method is proposed for estimating the ratio of sediment resuspension in estuaries with fine suspended sediments in the turbidity maximum zone(TMZ) of the Changjiang(Yangtze) estuary during 2005.Results show that there was a range of 18.7%±27.9% to 73.9%±22.5% per annum of total suspended particulate matter(SPM),with an average of 49.2%.Nearly half of the particulate matter in the TMZ originates from sediment resuspension.This indicates that sediment resuspension is one of the major mechanisms involved in formation of the TMZ.Compared with traditional method for calculating these ratios in the estuary,this new method evaluates the dynamic variation of SPM content carried by river runoff from the river mouth to the ocean.The new method produced more reliable results than the traditional one and could produce a better estimation of resuspension flux for particulate matter in estuaries.展开更多
基金Supported by the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA05030402)the National Natural Science Foundation of China(Nos.U1406403,41121064,41376092)the Public Science and Technology Research Funds Projects of Ocean(No.200905012-9)
文摘The turbidity maximum zone(TMZ) is one of the most important regions in an estuary.However,the high concentration of suspended material makes it difficult to measure the partial pressure of CO_2(pCO_2) in these regions.Therefore,very little data is available on the pCO_2 levels in TMZs.To relatively accurately evaluate the CO_2 flux in an example estuary,we studied the TMZ and surrounding area in the Changjiang(Yangtze) River estuary.From seasonal cruises during February,August,November 2010,and May 2012,the pCO_2 in the TMZ and surrounding area was calculated from pH and total alkalinity(TA)measured in situ,from which the CO_2 flux was calculated.Overall,the TMZ and surrounding area acted as a source of atmosphere CO_2 in February and November,and as a sink in May and August.The average FCO_2was-9,-16,5,and 5 mmol/(m^2·d) in May,August,November,and February,respectively.The TMZ's role as a source or sink of atmosphere CO_2 was quite different to the outer estuary.In the TMZ and surrounding area,suspended matter,phytoplankton,and pH were the main factors controlling the FCO_2,but here the influence of temperature,salinity,and total alkalinity on the FCO_2 was weak.Organic carbon decomposition in suspended matter was the main reason for the region acting as a CO_2 source in winter,and phytoplankton production was the main reason the region was a CO_2 sink in summer.
基金Supported by National Natural Science Foundation of China for Creative Research Groups(No.41121064) and NSFC(No.41176138)the Program from Three Gorges Engineering Construction Committee of the State Council,China(No.SX2004-010)
文摘Based on the principle of conservative matter removal in estuary,a new method is proposed for estimating the ratio of sediment resuspension in estuaries with fine suspended sediments in the turbidity maximum zone(TMZ) of the Changjiang(Yangtze) estuary during 2005.Results show that there was a range of 18.7%±27.9% to 73.9%±22.5% per annum of total suspended particulate matter(SPM),with an average of 49.2%.Nearly half of the particulate matter in the TMZ originates from sediment resuspension.This indicates that sediment resuspension is one of the major mechanisms involved in formation of the TMZ.Compared with traditional method for calculating these ratios in the estuary,this new method evaluates the dynamic variation of SPM content carried by river runoff from the river mouth to the ocean.The new method produced more reliable results than the traditional one and could produce a better estimation of resuspension flux for particulate matter in estuaries.