As a generalization to the heat semigroup on the Heisenberg group, the diffusion semigroup generated by the subelliptic operator L :=1/2 sum from i=1 to m X_i^2 on R^(m+d):= R^m× R^d is investigated, where X_i(x...As a generalization to the heat semigroup on the Heisenberg group, the diffusion semigroup generated by the subelliptic operator L :=1/2 sum from i=1 to m X_i^2 on R^(m+d):= R^m× R^d is investigated, where X_i(x, y) = sum (σki?xk) from k=1 to m+sum (((A_lx)_i?_(yl)) from t=1 to d,(x, y) ∈ R^(m+d), 1 ≤ i ≤ m for σ an invertible m × m-matrix and {A_l}_1 ≤ l ≤d some m × m-matrices such that the Hrmander condition holds.We first establish Bismut-type and Driver-type derivative formulas with applications on gradient estimates and the coupling/Liouville properties, which are new even for the heat semigroup on the Heisenberg group; then extend some recent results derived for the heat semigroup on the Heisenberg group.展开更多
基金supported by National Natural Science Foundation of China(Grant Nos.11131003 and 11431014)the 985 Project and the Laboratory of Mathematical and Complex Systems
文摘As a generalization to the heat semigroup on the Heisenberg group, the diffusion semigroup generated by the subelliptic operator L :=1/2 sum from i=1 to m X_i^2 on R^(m+d):= R^m× R^d is investigated, where X_i(x, y) = sum (σki?xk) from k=1 to m+sum (((A_lx)_i?_(yl)) from t=1 to d,(x, y) ∈ R^(m+d), 1 ≤ i ≤ m for σ an invertible m × m-matrix and {A_l}_1 ≤ l ≤d some m × m-matrices such that the Hrmander condition holds.We first establish Bismut-type and Driver-type derivative formulas with applications on gradient estimates and the coupling/Liouville properties, which are new even for the heat semigroup on the Heisenberg group; then extend some recent results derived for the heat semigroup on the Heisenberg group.