The discontinuous yielding phenomenon (DYP) during high temperature deformation was investigated based on the isothermal compression of TC8 titanium alloy. The DYP of TC8 titanium alloy was characterized by quan...The discontinuous yielding phenomenon (DYP) during high temperature deformation was investigated based on the isothermal compression of TC8 titanium alloy. The DYP of TC8 titanium alloy was characterized by quantifying the yield drop of the DYP (△σUL) and ending strain of flow oscillation (εOSC) based on the flow stress?strain curves, and then the effect of deformation parameters on the △σUL and εOSC values was analyzed. The results show that the △σUL and εOSC values increase with the increase of strain rate. The effect of deformation temperature on the ?σUL value depends on the strain rate. Finally, the transmission electron microscope (TEM) observation shows the evidence for the dynamic theory, which ascribes the DYP to the generation of mobile dislocation at the grain boundary. Meanwhile, the optical microscope (OM) observation shows that both the primary α grain and β grain become smaller with the increase of strain, which well interprets the effect of deformation parameters on the △σUL and εOSC values.展开更多
The stand growth and yield dynamic models for Larch in Jilin Province were developed based on the forest growth theories with the forest continuous inventory data. The results indicated that the developed models had h...The stand growth and yield dynamic models for Larch in Jilin Province were developed based on the forest growth theories with the forest continuous inventory data. The results indicated that the developed models had high precision, and they could be used for the updating data of inventory of planning and designing and optimal decision of forest management.展开更多
WT5 'BZThis paper presents an unsteady and nonlinear wake model based on th e widely used Peters He finite state dynamic wake model with improvements. The swirl component in the tip trace plane (TTP) can be pr...WT5 'BZThis paper presents an unsteady and nonlinear wake model based on th e widely used Peters He finite state dynamic wake model with improvements. The swirl component in the tip trace plane (TTP) can be predicted, nonlinear items are added into the linear theory, and the old small angle assumption use d in matrix prediction is removed. All of these enha ncements are aimed at the low speed flight phase and formulations for the induce d velocity field just in the TTP frame are derived. The corresponding FORTRAN pr ogram is tested and optimized for the real time applications on PCs.展开更多
Rock burst is one of the most catastrophic dynamic hazards in coal mining. A static and dynamic stresses superposition-based(SDSS-based) risk evaluation method of rock burst was proposed to pre-evaluate rock burst ris...Rock burst is one of the most catastrophic dynamic hazards in coal mining. A static and dynamic stresses superposition-based(SDSS-based) risk evaluation method of rock burst was proposed to pre-evaluate rock burst risk. Theoretical basis of this method is the stress criterion incurring rock burst and rock burst risk is evaluated according to the closeness degree of the total stress(due to the superposition of static stress in the coal and dynamic stress induced by tremors) with the critical stress. In addition, risk evaluation criterion of rock burst was established by defining the "Satisfaction Degree" of static stress. Furthermore,the method was used to pre-evaluate rock burst risk degree and prejudge endangered area of an insular longwall face in Nanshan Coal Mine in China. Results show that rock burst risk is moderate at advance extent of 97 m, strong at advance extent of 97-131 m,and extremely strong(i.e. inevitable to occur) when advance extent exceeds 131 m(mining is prohibited in this case). The section of two gateways whose floor abuts 15-3 coal seam is a susceptible area prone to rock burst. Evaluation results were further compared with rock bursts and tremors detected by microseismic monitoring. Comparison results indicate that evaluation results are consistent with microseismic monitoring, which proves the method's feasibility.展开更多
In order to perfectly reflect the dynamic corrosion of reinforced concrete (RC) cover in practical engineering,an analytic model of non-uniform corrosion induced cracking was presented based on the elastic-plastic fra...In order to perfectly reflect the dynamic corrosion of reinforced concrete (RC) cover in practical engineering,an analytic model of non-uniform corrosion induced cracking was presented based on the elastic-plastic fracture mechanics theory.Comparisons with the published experimental data show that the predictions given by the present model are in good agreement with the results both for natural exposed experiments and short-time indoor tests (the best difference is about 2.7%).Also it obviously provides much better precision than those models under the assumption of uniform corrosion (the maximal improved precision is about 48%).Therefore,it is pointed out that the so-called uniform corrosion models to describe the cover cracking of RC should be adopted cautiously.Finally,the influences of thickness of local rusty layer around the reinforcing steel bar on the critical corrosion-induced crack indexes were investigated.It is found that the thickness of local rusty layer has great effect on the critical mass loss of reinforcing steel,threshold expansion pressure,and time to cover cracking.For local rusty layer thickness with a size of a=0.5 mm,the time to cover cracking will increase by about one times when a/b (a,semi-minor axis;b,semi-major axis) changes from 0.1 to 1 mm.展开更多
In this paper, we have detailedly studied the dynamical suppression of the phase damping for the two-qubit quantum memory of Ising model by the quantum "bang-bang" technique. We find the sequence of periodic...In this paper, we have detailedly studied the dynamical suppression of the phase damping for the two-qubit quantum memory of Ising model by the quantum "bang-bang" technique. We find the sequence of periodic radiofrequency pulses repetitively to flip the state of the two-qubit system and quantitatively find that these pulses can be used to effectively suppress the phase damping decoherence of the quantum memory and freeze the system state into its initial state. The general sequence of periodic radio-frequency pulses to suppress the phase damping of multi-qubit of Ising model is also given.展开更多
A new method for MEMS dynamics analysis is presented,ased on the similarity theory. With this method, two systems' similarities can be captured in terms of physics quantities/governed-equations amongst different e...A new method for MEMS dynamics analysis is presented,ased on the similarity theory. With this method, two systems' similarities can be captured in terms of physics quantities/governed-equations amongst different energy fields, and then the unknown dynamic characteristics of one of the systems can be analyzed according to the similar ones of the other system. The probability to establish a pair of similar systems among MEMS and other energy systems is also discussed based on the equivalent between mechanics and electrics, and then the feasibility of applying this method is proven by an example, in which the squeezed damping force in MEMS and the current of its equivalent circuit established by this method are compared.展开更多
One of the main challenges in consciousness research is widely known as the hard problem of consciousness. In order to tackle this problem, I utilize an approach from theoretical physics, called stochastic electrodyna...One of the main challenges in consciousness research is widely known as the hard problem of consciousness. In order to tackle this problem, I utilize an approach from theoretical physics, called stochastic electrodynamics (SED) which goes one step beyond quantum theory and sheds new light on the reality behind matter. According to this approach, matter is a resonant oscillator that is orchestrated by an all-pervasive stochastic radiation field, called zero-point field (ZPF). The properties of matter are not intrinsic but acquired by dynamic interaction with the ZPF, which in turn picks up information about the material system as soon as an ordered state, i.e., a stable attractor, is reached. I point out that these principles apply also to macroscopic biological systems. From this perspective, long-range correlations in the brain, such as neural gamma synchrony, can be interpreted in terms of order phenomena induced and stabilized by the ZPF, suggesting that every attractor in the brain goes along with an information state in the ZPF. In order to build the bridge to consciousness, I employ additional input from Eastern philosophy. From a comparison between SED and Eastern philosophy I draw the conclusion that the ZPF is an appropriate candidate for the substrate of consciousness, implying that information states in the ZPF are associated with conscious states. On this basis I develop a conceptual framework for consciousness that is fully consistent with physics, neurophysiology, and Eastern philosophy. I argue that this conceptual framework has many interesting features and opens a door to a theory of consciousness. Particularly, it solves the problem of how matter and consciousness communicate in a causally closed functional chain, it gives a physical grounding to existing approaches regarding the connection between consciousness and information, and it gives clear direction to future models and experiments.展开更多
The remain passenger problem at subway station platform was defined initially,and the period variation of remain passenger queues at platform was investigated through arriving and boarding analyses.Taking remain passe...The remain passenger problem at subway station platform was defined initially,and the period variation of remain passenger queues at platform was investigated through arriving and boarding analyses.Taking remain passenger queues at platform as dynamic stochastic process,a new probabilistic queuing method was developed based on probabilistic theory and discrete time Markov chain theory.This model can calculate remain passenger queues while considering different directions.Considering the stable or variable train arriving period and different platform crossing types,a series of model deformation research was carried out.The probabilistic approach allows to capture the cyclic behavior of queues,measures the uncertainty of a queue state prediction by computing the evolution of its probability in time,and gives any temporal distribution of the arrivals.Compared with the actual data,the deviation of experimental results is less than 20%,which shows the efficiency of probabilistic approach clearly.展开更多
Because of its light weight, broadband, and adaptable properties, smart material has been widely applied in the active vibration control (AVC) of flexible structures. Based on a firstorder shear deformation theory, ...Because of its light weight, broadband, and adaptable properties, smart material has been widely applied in the active vibration control (AVC) of flexible structures. Based on a firstorder shear deformation theory, by coupling the electrical and mechanical operation, a 4-node quadrilateral piezoelectric composite element with 24 degrees of freedom for generalized displacements and one electrical potential degree of freedom per piezoelectric layer was derived. Dynamic characteristics of a beam with discontinuously distributed piezoelectric sensors and actuators were presented. A linear quadratic regulator (LQR) feedback controller was designed to suppress the vibration of the beam in the state space using the high precise direct (HPD) integration method.展开更多
This paper presents an introduction to the concepts of domestication and foreignization and the theory of Nida's "dynamic equivalence". Then, the paper makes an analysis of "dynamic equivalence" from the perspect...This paper presents an introduction to the concepts of domestication and foreignization and the theory of Nida's "dynamic equivalence". Then, the paper makes an analysis of "dynamic equivalence" from the perspective of domestication and foreignization.展开更多
In the frame work of chiral perturbation theory, a modified effective Lagrangian for meson-baryon system is constructed, where the SU(3) breaking effect for meson is considered. The difference between physical and c...In the frame work of chiral perturbation theory, a modified effective Lagrangian for meson-baryon system is constructed, where the SU(3) breaking effect for meson is considered. The difference between physical and chiral limlt decay constants is taken into account. Calculated to one 1ooi) at O(p^3), the sigma terms and strangeness contents of baryon octet are obtained.展开更多
With comprehensive considerations of the operational safety and collection efficiency for the tracked miner collecting the seafloor poly-metallic nodules, two new improved mining paths for the miner on the deep seaflo...With comprehensive considerations of the operational safety and collection efficiency for the tracked miner collecting the seafloor poly-metallic nodules, two new improved mining paths for the miner on the deep seafloor were proposed. Compared to the conventional mining path, the design principles and superiorities of the two new paths are that the miner turning with relative long radius should avoid large sinkage and high slip, so as to ensure its operational safety, while the space between its straight-line trajectories before and after the turning is optimum, which is designed as the total width of the miner, and collect nodules as more as possible, so as to ensure its collection efficiency. To realize the new mining paths, theoretical designs and quantitative calculations were carried out to determine the exact positions for the speed controls of the miner during its whole operation process. With the new dynamic model of the miner, and through regulations of the speeds of the left and right tracks of the miner on the exact motion positions according to the theoretical calculations, the two new improved mining paths for the miner on the seafloor were successfully simulated, thus the turning radius of the miner in the simulation is about 21.8 m, while the distance between the straight-line trajectories before and after the turning is about 5.2 m. The dynamic simulation results preliminarily prove the feasibility of these two new mining paths, and further can provide important theoretical guidance and useful technical reference for the practical tracked miner operation and control on the seafloor.展开更多
This paper presents a simple solution of the dynamic buckling of stiffened plates under in-plane impact loading. Based on large deflection theory, a discretely stiffened plate model has been used. The tangential stres...This paper presents a simple solution of the dynamic buckling of stiffened plates under in-plane impact loading. Based on large deflection theory, a discretely stiffened plate model has been used. The tangential stresses of stiffeners and in-plane displacement are neglected. Appling the Hamilton's principle, the motion equations of stiffened plates are obtained. The deflection of the plate is taken as Fourier series, and using Galerkin method the discrete equations can be deduced, which can be solved easily by Runge-Kutta method. The dynamic buckling loads of the stiffened plates are obtained form Budiansky-Roth criterion.展开更多
Based on the fluid transient theory and explosive dynamics, a new type explosive driven jet is put forward. The generator of the proposed jet system comprises an explosive power source, a dynamic cavity, a spacing blo...Based on the fluid transient theory and explosive dynamics, a new type explosive driven jet is put forward. The generator of the proposed jet system comprises an explosive power source, a dynamic cavity, a spacing block, a water storage chamber, and a rubber membrane. The dynamic explosive source of power for the jet is composed of a cartridge and a bullet. The pressure in the dynamic cavity goes up to a range from 300 MPa to 350 MPa very quickly when the bullet is emitted. Driven by such a high pressure, the speed of the jet reaches 120 m/s. The effective distance to distinguish a fire is within 40 m. The jet has the following advantages over a conventional high-pressure water jet system: 1)strong power and strong transient force produced by dynamic source; 2) the energy of the dynamical source concentrated in a small scope with very little loss; 3) extensive applicability; and 4) safe usage without sparkling and smoke.展开更多
To study the collapse of imperfect subsea pipelinos, a 2D high-order nonlinear model is developed. In this model, the large deformation of the pipes is considered by raiaining the high-order nonlinear terms of strain....To study the collapse of imperfect subsea pipelinos, a 2D high-order nonlinear model is developed. In this model, the large deformation of the pipes is considered by raiaining the high-order nonlinear terms of strain. In addi-tion, the J2 plastic flow theory is adopted to describe the elasioplastic constitutive relations of material. The quasi-static process of collapse is analyzed by the increment method. For each load step, the equations based on the principle of virtual work are presented and solved by the discrete Newton's method. Furthermore, finite element simulations and full-scale experiments were preformed to validate the results of the model. Research on the major influencing factors of collapse pressure, including D/t, material type and initial ovality, is also presented.展开更多
Based on theory of variable-mass system thermodynamics, the dynamic mathematic models of each component of the horizontal steam-launch system were established, and by the numerical simulation of the system launching p...Based on theory of variable-mass system thermodynamics, the dynamic mathematic models of each component of the horizontal steam-launch system were established, and by the numerical simulation of the system launching process, the thermodynamics and kinetics characteristics of the system with three valves of different flow characteristics were got. The simulation results show that the values of the peak-to-average ratios of dimensionless acceleration with the equal percentage valve, the linear valve and the quick opening valve are 1.355, 1.614 and 1.722, respectively, and the final values of the dimensionless velocities are 0.843, 0.957 and 1.0, respectively. In conclusion, the value of the dimensionless velocity with the equal percentage valve doesn't reach the set value of 0.90 when the dimensionless displacement is 0.82, while the system with the linear valve can meet the launching requirement, as well as the fluctuation range of dimensionless acceleration is less than that of the quick opening valve. Therefore, the system with the linear valve has the best performance among the three kinds of valves.展开更多
基金Project(51275416)supported by the National Natural Science Foundation of China
文摘The discontinuous yielding phenomenon (DYP) during high temperature deformation was investigated based on the isothermal compression of TC8 titanium alloy. The DYP of TC8 titanium alloy was characterized by quantifying the yield drop of the DYP (△σUL) and ending strain of flow oscillation (εOSC) based on the flow stress?strain curves, and then the effect of deformation parameters on the △σUL and εOSC values was analyzed. The results show that the △σUL and εOSC values increase with the increase of strain rate. The effect of deformation temperature on the ?σUL value depends on the strain rate. Finally, the transmission electron microscope (TEM) observation shows the evidence for the dynamic theory, which ascribes the DYP to the generation of mobile dislocation at the grain boundary. Meanwhile, the optical microscope (OM) observation shows that both the primary α grain and β grain become smaller with the increase of strain, which well interprets the effect of deformation parameters on the △σUL and εOSC values.
文摘The stand growth and yield dynamic models for Larch in Jilin Province were developed based on the forest growth theories with the forest continuous inventory data. The results indicated that the developed models had high precision, and they could be used for the updating data of inventory of planning and designing and optimal decision of forest management.
文摘WT5 'BZThis paper presents an unsteady and nonlinear wake model based on th e widely used Peters He finite state dynamic wake model with improvements. The swirl component in the tip trace plane (TTP) can be predicted, nonlinear items are added into the linear theory, and the old small angle assumption use d in matrix prediction is removed. All of these enha ncements are aimed at the low speed flight phase and formulations for the induce d velocity field just in the TTP frame are derived. The corresponding FORTRAN pr ogram is tested and optimized for the real time applications on PCs.
基金Project(51174285)supported by the National Natural Science Foundation of China and the Shenhua Group Corporation Limited,ChinaProject(CXZZ12_0949)supported by the Research and Innovation Project for College Graduates of Jiangsu Province,ChinaProject(SZBF2011-6-B35)supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘Rock burst is one of the most catastrophic dynamic hazards in coal mining. A static and dynamic stresses superposition-based(SDSS-based) risk evaluation method of rock burst was proposed to pre-evaluate rock burst risk. Theoretical basis of this method is the stress criterion incurring rock burst and rock burst risk is evaluated according to the closeness degree of the total stress(due to the superposition of static stress in the coal and dynamic stress induced by tremors) with the critical stress. In addition, risk evaluation criterion of rock burst was established by defining the "Satisfaction Degree" of static stress. Furthermore,the method was used to pre-evaluate rock burst risk degree and prejudge endangered area of an insular longwall face in Nanshan Coal Mine in China. Results show that rock burst risk is moderate at advance extent of 97 m, strong at advance extent of 97-131 m,and extremely strong(i.e. inevitable to occur) when advance extent exceeds 131 m(mining is prohibited in this case). The section of two gateways whose floor abuts 15-3 coal seam is a susceptible area prone to rock burst. Evaluation results were further compared with rock bursts and tremors detected by microseismic monitoring. Comparison results indicate that evaluation results are consistent with microseismic monitoring, which proves the method's feasibility.
基金Project(50925829) supported by the National Science Fund for Distinguished Young Scholars of ChinaProject(50908148) supported by the National Natural Science Foundation of ChinaProjects(2009-K4-23,2010-11-33) supported by the Research of Ministry of Housing and Urban Rural Development of China
文摘In order to perfectly reflect the dynamic corrosion of reinforced concrete (RC) cover in practical engineering,an analytic model of non-uniform corrosion induced cracking was presented based on the elastic-plastic fracture mechanics theory.Comparisons with the published experimental data show that the predictions given by the present model are in good agreement with the results both for natural exposed experiments and short-time indoor tests (the best difference is about 2.7%).Also it obviously provides much better precision than those models under the assumption of uniform corrosion (the maximal improved precision is about 48%).Therefore,it is pointed out that the so-called uniform corrosion models to describe the cover cracking of RC should be adopted cautiously.Finally,the influences of thickness of local rusty layer around the reinforcing steel bar on the critical corrosion-induced crack indexes were investigated.It is found that the thickness of local rusty layer has great effect on the critical mass loss of reinforcing steel,threshold expansion pressure,and time to cover cracking.For local rusty layer thickness with a size of a=0.5 mm,the time to cover cracking will increase by about one times when a/b (a,semi-minor axis;b,semi-major axis) changes from 0.1 to 1 mm.
文摘In this paper, we have detailedly studied the dynamical suppression of the phase damping for the two-qubit quantum memory of Ising model by the quantum "bang-bang" technique. We find the sequence of periodic radiofrequency pulses repetitively to flip the state of the two-qubit system and quantitatively find that these pulses can be used to effectively suppress the phase damping decoherence of the quantum memory and freeze the system state into its initial state. The general sequence of periodic radio-frequency pulses to suppress the phase damping of multi-qubit of Ising model is also given.
文摘A new method for MEMS dynamics analysis is presented,ased on the similarity theory. With this method, two systems' similarities can be captured in terms of physics quantities/governed-equations amongst different energy fields, and then the unknown dynamic characteristics of one of the systems can be analyzed according to the similar ones of the other system. The probability to establish a pair of similar systems among MEMS and other energy systems is also discussed based on the equivalent between mechanics and electrics, and then the feasibility of applying this method is proven by an example, in which the squeezed damping force in MEMS and the current of its equivalent circuit established by this method are compared.
文摘One of the main challenges in consciousness research is widely known as the hard problem of consciousness. In order to tackle this problem, I utilize an approach from theoretical physics, called stochastic electrodynamics (SED) which goes one step beyond quantum theory and sheds new light on the reality behind matter. According to this approach, matter is a resonant oscillator that is orchestrated by an all-pervasive stochastic radiation field, called zero-point field (ZPF). The properties of matter are not intrinsic but acquired by dynamic interaction with the ZPF, which in turn picks up information about the material system as soon as an ordered state, i.e., a stable attractor, is reached. I point out that these principles apply also to macroscopic biological systems. From this perspective, long-range correlations in the brain, such as neural gamma synchrony, can be interpreted in terms of order phenomena induced and stabilized by the ZPF, suggesting that every attractor in the brain goes along with an information state in the ZPF. In order to build the bridge to consciousness, I employ additional input from Eastern philosophy. From a comparison between SED and Eastern philosophy I draw the conclusion that the ZPF is an appropriate candidate for the substrate of consciousness, implying that information states in the ZPF are associated with conscious states. On this basis I develop a conceptual framework for consciousness that is fully consistent with physics, neurophysiology, and Eastern philosophy. I argue that this conceptual framework has many interesting features and opens a door to a theory of consciousness. Particularly, it solves the problem of how matter and consciousness communicate in a causally closed functional chain, it gives a physical grounding to existing approaches regarding the connection between consciousness and information, and it gives clear direction to future models and experiments.
基金Project(2011BAG01B01) supported by the Major State Basic Research and Development Program of ChinaProject(RCS2012ZZ002) supported by the State Key Lab of Rail Traffic Control and Safety,China
文摘The remain passenger problem at subway station platform was defined initially,and the period variation of remain passenger queues at platform was investigated through arriving and boarding analyses.Taking remain passenger queues at platform as dynamic stochastic process,a new probabilistic queuing method was developed based on probabilistic theory and discrete time Markov chain theory.This model can calculate remain passenger queues while considering different directions.Considering the stable or variable train arriving period and different platform crossing types,a series of model deformation research was carried out.The probabilistic approach allows to capture the cyclic behavior of queues,measures the uncertainty of a queue state prediction by computing the evolution of its probability in time,and gives any temporal distribution of the arrivals.Compared with the actual data,the deviation of experimental results is less than 20%,which shows the efficiency of probabilistic approach clearly.
基金Supported by the National Natural Science Foundation of China (51079027).
文摘Because of its light weight, broadband, and adaptable properties, smart material has been widely applied in the active vibration control (AVC) of flexible structures. Based on a firstorder shear deformation theory, by coupling the electrical and mechanical operation, a 4-node quadrilateral piezoelectric composite element with 24 degrees of freedom for generalized displacements and one electrical potential degree of freedom per piezoelectric layer was derived. Dynamic characteristics of a beam with discontinuously distributed piezoelectric sensors and actuators were presented. A linear quadratic regulator (LQR) feedback controller was designed to suppress the vibration of the beam in the state space using the high precise direct (HPD) integration method.
文摘This paper presents an introduction to the concepts of domestication and foreignization and the theory of Nida's "dynamic equivalence". Then, the paper makes an analysis of "dynamic equivalence" from the perspective of domestication and foreignization.
文摘In the frame work of chiral perturbation theory, a modified effective Lagrangian for meson-baryon system is constructed, where the SU(3) breaking effect for meson is considered. The difference between physical and chiral limlt decay constants is taken into account. Calculated to one 1ooi) at O(p^3), the sigma terms and strangeness contents of baryon octet are obtained.
基金Project(DYXM-115-04-02-01) supported by the National Deep-sea Technology Project of Development and Research, ChinaProject(2011QNZT058) supported by the Fundamental Research Funds for the Central Universities, ChinaProject(51105386) supported by the National Natural Science Foundation of China
文摘With comprehensive considerations of the operational safety and collection efficiency for the tracked miner collecting the seafloor poly-metallic nodules, two new improved mining paths for the miner on the deep seafloor were proposed. Compared to the conventional mining path, the design principles and superiorities of the two new paths are that the miner turning with relative long radius should avoid large sinkage and high slip, so as to ensure its operational safety, while the space between its straight-line trajectories before and after the turning is optimum, which is designed as the total width of the miner, and collect nodules as more as possible, so as to ensure its collection efficiency. To realize the new mining paths, theoretical designs and quantitative calculations were carried out to determine the exact positions for the speed controls of the miner during its whole operation process. With the new dynamic model of the miner, and through regulations of the speeds of the left and right tracks of the miner on the exact motion positions according to the theoretical calculations, the two new improved mining paths for the miner on the seafloor were successfully simulated, thus the turning radius of the miner in the simulation is about 21.8 m, while the distance between the straight-line trajectories before and after the turning is about 5.2 m. The dynamic simulation results preliminarily prove the feasibility of these two new mining paths, and further can provide important theoretical guidance and useful technical reference for the practical tracked miner operation and control on the seafloor.
文摘This paper presents a simple solution of the dynamic buckling of stiffened plates under in-plane impact loading. Based on large deflection theory, a discretely stiffened plate model has been used. The tangential stresses of stiffeners and in-plane displacement are neglected. Appling the Hamilton's principle, the motion equations of stiffened plates are obtained. The deflection of the plate is taken as Fourier series, and using Galerkin method the discrete equations can be deduced, which can be solved easily by Runge-Kutta method. The dynamic buckling loads of the stiffened plates are obtained form Budiansky-Roth criterion.
基金the national Natural Science Foundation of China (No. 59874033).
文摘Based on the fluid transient theory and explosive dynamics, a new type explosive driven jet is put forward. The generator of the proposed jet system comprises an explosive power source, a dynamic cavity, a spacing block, a water storage chamber, and a rubber membrane. The dynamic explosive source of power for the jet is composed of a cartridge and a bullet. The pressure in the dynamic cavity goes up to a range from 300 MPa to 350 MPa very quickly when the bullet is emitted. Driven by such a high pressure, the speed of the jet reaches 120 m/s. The effective distance to distinguish a fire is within 40 m. The jet has the following advantages over a conventional high-pressure water jet system: 1)strong power and strong transient force produced by dynamic source; 2) the energy of the dynamical source concentrated in a small scope with very little loss; 3) extensive applicability; and 4) safe usage without sparkling and smoke.
基金Supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China(No.2011ZX05026-005)the National Natural Science Foundation of China(No.51239008)the National Basic Research Program of China("973"Program,No.2014CB046800)
文摘To study the collapse of imperfect subsea pipelinos, a 2D high-order nonlinear model is developed. In this model, the large deformation of the pipes is considered by raiaining the high-order nonlinear terms of strain. In addi-tion, the J2 plastic flow theory is adopted to describe the elasioplastic constitutive relations of material. The quasi-static process of collapse is analyzed by the increment method. For each load step, the equations based on the principle of virtual work are presented and solved by the discrete Newton's method. Furthermore, finite element simulations and full-scale experiments were preformed to validate the results of the model. Research on the major influencing factors of collapse pressure, including D/t, material type and initial ovality, is also presented.
基金Project(20080431380)supported by the National Postdoctoral Science Foundation,China
文摘Based on theory of variable-mass system thermodynamics, the dynamic mathematic models of each component of the horizontal steam-launch system were established, and by the numerical simulation of the system launching process, the thermodynamics and kinetics characteristics of the system with three valves of different flow characteristics were got. The simulation results show that the values of the peak-to-average ratios of dimensionless acceleration with the equal percentage valve, the linear valve and the quick opening valve are 1.355, 1.614 and 1.722, respectively, and the final values of the dimensionless velocities are 0.843, 0.957 and 1.0, respectively. In conclusion, the value of the dimensionless velocity with the equal percentage valve doesn't reach the set value of 0.90 when the dimensionless displacement is 0.82, while the system with the linear valve can meet the launching requirement, as well as the fluctuation range of dimensionless acceleration is less than that of the quick opening valve. Therefore, the system with the linear valve has the best performance among the three kinds of valves.