Nitrogen doping has been widely used to improve the performance of carbon electrodes in supercapacitors,particularly in terms of their high-frequency response.However,the charge storage and electrolyte ion response me...Nitrogen doping has been widely used to improve the performance of carbon electrodes in supercapacitors,particularly in terms of their high-frequency response.However,the charge storage and electrolyte ion response mechanisms of different nitrogen dopants at high frequencies are still unclear.In this study,melamine foam carbons with different configurations of surfacedoped N were formed by gradient carbonization,and the effects of the configurations on the high-frequency response behavior of the supercapacitors were analyzed.Using a combination of experiments and first-principle calculations,we found that pyrrolic N,characterized by a higher adsorption energy,increases the charge storage capacity of the electrode at high frequencies.On the other hand,graphitic N,with a lower adsorption energy,increases the speed of ion response.We propose the use of adsorption energy as a practical descriptor for electrode/electrolyte design in high-frequency applications,offering a more universal approach for improving the performance of N-doped carbon materials in supercapacitors.展开更多
Due to their outstanding electrical contact properties,Cd-containing silver-matrix electrical contact materials can meet the requirements of high stability and long life for military defense and aerospace applications...Due to their outstanding electrical contact properties,Cd-containing silver-matrix electrical contact materials can meet the requirements of high stability and long life for military defense and aerospace applications.In order to further reduce the Cd content under the premise of meeting the high-performance requirements,in this study,high-purity intermediate Ti_(2)Cd powder of MAX phase(Ti_(2)CdC)was synthesized with a pressureless technique and then applied to reinforce the Ag matrix.The Cd content of the as-prepared Ag/Ti_(2)Cd composites was actually reduced by 38.31%compared with conventional Ag/CdO material.Based on the systematic study of the effect of heat treatment temperature on the physical phase,morphology,interface and comprehensive physical properties of Ag/Ti_(2)Cd composites,the preferred samples(heat treated at 400°C for 1 h)showed high density(97.77%),low resistivity(2.34μΩ·cm),moderate hardness(90.8HV),high tensile strength(189.9 MPa),and exhibited good electrical contact performance after 40000 cycles of arc discharging under severe conditions(DC 28 V/20 A).The results of microscopic morphological evolution,phase change and elemental distribution of the electrical contact surface show that the combination of high stability of Ti_(2)Cd reinforcing phase,good interfacial bonding with Ag matrix and improved melt pool viscosity in the primary stage of arc erosion,results in low and stable contact resistance(average value 13.20 mΩ)and welding force(average value 0.6 N),low fluctuation of static force(2.2-2.5 N).The decomposition and absorption energy of Ti_(2)Cd and the arc extinguishing effect of Cd vapor are the main reasons for the stable arcing energy and arcing time of electric contacts in the late stage of arc erosion.展开更多
Zinc-ion capacitors(ZICs),which consist of a capacitor-type electrode and a battery-type electrode,not only possess the high power density of supercapacitors and the high energy density of batteries,but also have othe...Zinc-ion capacitors(ZICs),which consist of a capacitor-type electrode and a battery-type electrode,not only possess the high power density of supercapacitors and the high energy density of batteries,but also have other advantages such as abundant resources,high safety and environmental friendliness.However,they still face problems such as insufficient specific capacitance,a short cycling life,and narrow operating voltage and temperature ranges,which are hindering their practical use.We provide a comprehensive overview of the fundamental theory of carbon-based ZICs and summarize recent research progress from three perspectives:the carbon cathode,electrolyte and zinc anode.The influence of the structure and surface chemical properties of the carbon materials on the capacitive performance of ZICs is considered together with theoretical guidance for advancing their development and practical use.展开更多
Potassium-ion batteries(KIBs)have been seen as a competitive alternative to lithium-ion batteries(LIBs)due to their natural abundance,low cost and rocking chair-like operating mechanism similar to LIBs.Soft carbon has...Potassium-ion batteries(KIBs)have been seen as a competitive alternative to lithium-ion batteries(LIBs)due to their natural abundance,low cost and rocking chair-like operating mechanism similar to LIBs.Soft carbon has a lower voltage plateau compared to hard carbon and an easily modulated lattice structure compared to graphite,which provides particular advantages in KIBs anodes.Pitch has attracted much attention as a simple,readily available and inexpensive precursor for soft carbon,but its structure is easily damaged during cycling.Herein,the flexible film Pitch@CNF are prepared by uniformly winding reticulated carbon fibers on the surface of pitch-soft carbon via electrostatic spinning technique,which not only enables the pitch to maintain its structure well during cycling and withstand the volume expansion upon K^(+) insertion,but also is conducive to ionic transport of the three-dimensional reticulated structure.Meanwhile,the abundant pores on the carbon fibers can provide more K^(+) active sites.The prepared flexible self-supporting films can be used directly as electrodes without the addition of binders and conductive agents.The reversible capacity is 290 mAh·g^(-1)at a current density of 0.1 A·g^(-1),and the capacity retention rate is 83%after 500 cycles.展开更多
In recent years,copper iodide(CuI)is an emerging p-type wide bandgap semiconductor with high intrinsic Hall mobility,high optical absorption and large exciton binding energy.However,the spectral response and the photo...In recent years,copper iodide(CuI)is an emerging p-type wide bandgap semiconductor with high intrinsic Hall mobility,high optical absorption and large exciton binding energy.However,the spectral response and the photoelectric conversion efficiency are limited for CuI-based heterostructure devices,which is related to the difficulty in fabrication of high-quality CuI thin films on other semiconductors.In this study,a p-CuI/n-Si photodiode has been fabricated through a facile solid-phase iodination method.Although the CuI thin film is polycrystalline with obvious structural defects,the CuI/Si diode shows a high weak-light sensitivity and a high rectification ratio of 7.6×10^(4),indicating a good defect tolerance.This is because of the unilateral heterojunction behavior of the formation of the p^(+)n diode.In this work,the mechanism of photocurrent of the p^(+)n diode has been studied comprehensively.Different monochromatic lasers with wavelengths of 400,505,635 and 780 nm have been selected for testing the photoresponse.Under zero-bias voltage,the device is a unilateral heterojunction,and only visible light can be absorbed at the Si side.On the other hand,when a bias voltage of-3 V is applied,the photodiode is switched to a broader“UV-visible”band response mode.Therefore,the detection wavelength range can be switched between the“Visible”and“UV-visible”bands by adjusting the bias voltage.Moreover,the obtained CuI/Si diode was very sensitive to weak light illumination.A very high detectivity of 10^(13)-1014 Jones can be achieved with a power density as low as 0.5μW/cm^(2),which is significantly higher than that of other Cu-based diodes.These findings underscore the high application potential of CuI when integrated with the traditional Si industry.展开更多
There is an urgent need for lithium-ion capacitors(LICs)that have both high energy and high power densities to meet the continuously growing energy storage demands.LICs effectively balance the high energy density of t...There is an urgent need for lithium-ion capacitors(LICs)that have both high energy and high power densities to meet the continuously growing energy storage demands.LICs effectively balance the high energy density of traditional rechargeable batteries with the superior power density and long life of supercapacitors(SCs).Nevertheless,the development of LICs is still hampered by limited kinetic processes and capacity mismatch between the cathode and anode.Metal-organic frameworks(MOFs)and their derivatives have received significant attention because of their extensive specific surface area,different pore structures and topologies,and customizable functional sites,making them compelling candidate materials for achieving high-performance LICs.MOF-derived carbons,known for their exceptional electronic conductivity and large surface area,provide improved charge storage and rapid ion transport.MOF-derived transition metal oxides contribute to high specific capacities and improved electrochemical stability.Additionally,MOF-derived metal compounds/carbons provide combined effects that increase both the capacitive and Faradaic reactions,leading to a superior overall performance.The review begins with an overview of the fundamental principles of LICs,followed by an exploration of synthesis strategies and ligand selection for MOF-based composite materials.It then analyzes the advantages of original MOFs and their derived materials,such as carbon materials and metal compounds,in enhancing LIC performance.Finally,the review discusses the major challenges faced by MOFs and their derivatives in LIC applications and offers future research directions and recommendations.展开更多
The study of oxide heteroepitaxy has been hindered by the issues of misfit strain and substrate clamping,which impede both the optimization of performance and the acquisition of a fundamental understanding of oxide sy...The study of oxide heteroepitaxy has been hindered by the issues of misfit strain and substrate clamping,which impede both the optimization of performance and the acquisition of a fundamental understanding of oxide systems.Recently,however,the development of freestanding oxide membranes has provided a plausible solution to these substrate limitations.Single-crystalline functional oxide films can be released from their substrates without incurring significant damage and can subsequently be transferred to any substrate of choice.This paper discusses recent advancements in the fabrication,adjustable physical properties,and various applications of freestanding oxide perovskite films.First,we present the primary strategies employed for the synthesis and transfer of these freestanding perovskite thin films.Second,we explore the main functionalities observed in freestanding perovskite oxide thin films,with special attention to the tunable functionalities and physical properties of these freestanding perovskite membranes under varying strain states.Next,we encapsulate three representative devices based on freestanding oxide films.Overall,this review highlights the potential of freestanding oxide films for the study of novel functionalities and flexible electronics.展开更多
This article studies the role of electrochemical parameters in controlling the morphology of oxidized TiO_(2)nanotubes and the electrochemical performance of modified TiO_(2)nanotubes.Humidity is a key factor for fabr...This article studies the role of electrochemical parameters in controlling the morphology of oxidized TiO_(2)nanotubes and the electrochemical performance of modified TiO_(2)nanotubes.Humidity is a key factor for fabricating TiO_(2)nanotubes.When the relative humidity belows 70%,the TiO_(2)nanotubes can be successfully prepared.What's more,by changing the anodization voltage and time,the diameter and the length of TiO_(2)nanotubes can be adjusted.In addition,the TiO_(2)nanotubes are modified through electrochemical self-doping and loading Pt metal particles on the surface of the nanotubes,which promotes the performance of the supercapacitor.The sample anodized at 100 V for 3 h has a specific capacity of up to 2.576 mF/cm~2 at a scan rate of 100 mV/s after self-doping,and its capacity retention rate still remains at 89.55%after 5000 cycles,demonstrating excellent cycling stability.The Pt-modified sample has a specific capacity of up to 3.486 mF/cm~2 at the same scan rate,exhibiting more outstanding electrochemical performance.展开更多
Aqueous zinc ion hybrid capacitors(ZIHCs)are considered one of the most promising electrochemical energy storage systems due to their high safety,environmental friendliness,low cost,and high power density.However,the ...Aqueous zinc ion hybrid capacitors(ZIHCs)are considered one of the most promising electrochemical energy storage systems due to their high safety,environmental friendliness,low cost,and high power density.However,the low energy density and the lack of sustainable design strategies for the cathodes hinder the practical application of ZIHCs.Herein,we design the N and O co-doped porous carbon cathode by annealing metal-organic framework(ZIF-8).ZIF-8 retains the original dodecahedral structure with a high specific surface(2814.67 m^(2)/g)and I_(G)/I_(D) ratio of 1.0 during carbonization and achieves self-doping of N and O heteroatoms.Abundant defect sites are introduced into the porous carbon to provide additional active sites for ion adsorption after the activation of carbonized ZIF-8 by KOH treatment.The ZIHCs assembled with modified ZIF-8 as the cathode and commercial zinc foil as the anode show an energy density of 125 W∙h/kg and a power density of 79 W/kg.In addition,this ZIHCs device achieves capacity retention of 77.8%after 9000 electrochemical cycles,which is attributed to the diverse pore structure and plentiful defect sites of ZIF-8-800(KOH).The proposed strategy may be useful in developing high-performance metal-ion hybrid capacitors for large-scale energy storage.展开更多
We report an economical approach for the fabrication of laser-produced graphene(LPG)electrodes,which results in an improved electrochemical performance.Polyimide polymer was used as the starting material for LPG synth...We report an economical approach for the fabrication of laser-produced graphene(LPG)electrodes,which results in an improved electrochemical performance.Polyimide polymer was used as the starting material for LPG synthesis and was irradiated under ambient conditions with a CO_(2) laser.The prepared LPG samples were characterized by Raman spectroscopy and FTIR,which validated the formation of multilayer graphene containing sp2 hybridized C=C bonds.FE-SEM revealed three-dimensional(3D)sheet-like structures,while HR-TEM images showed lattice planes with an interplanar spacing of approximately 0.33 nm,corres-ponding to the(002)plane of graphene.Their electrochemical performance showed a remarkable areal specific capacitance(CA)of 51 mF cm^(−2)(170 F g^(-1))at 1 mA cm^(−2)(3.3 A g^(-1))in a three-electrode configuration with 1 mol L^(−1) KOH as the aqueous electrolyte.The LPG electrodes produced an energy density of~3.5μWh cm^(−2) and a power density of~350μW cm^(−2),demonstrating signific-ant energy storage ability.They also had an excellent cycling stability,retaining 87%of their specific capacitance after 3000 cycles at 1 mA/cm^(2).A symmetric supercapacitor fabricated with LPG electrodes and the 1 mol L^(−1) KOH electrolyte had a specific capacit-ance of 23 mF cm^(−2) and showed excellent retention after 10000 cycles,showing LPG’s potential for use in supercapacitors.展开更多
The quest for sustainable energy storage solutions is more critical than ever,with the rise in global energy demand and the urgency of transition from fossil fuels to renewable sources.Carbon nanotubes(CNTs),with thei...The quest for sustainable energy storage solutions is more critical than ever,with the rise in global energy demand and the urgency of transition from fossil fuels to renewable sources.Carbon nanotubes(CNTs),with their exceptional electrical conduct-ivity and structural integrity,are at the forefront of this endeavor,offering promising ways for the advance of electrochemical energy storage(EES)devices.This review provides an analysis of the synthesis,properties,and applications of CNTs in the context of EES.We explore the evolution of CNT synthesis methods,including arc discharge,laser ablation,and chemical vapor deposition,and highlight the recent developments in metal-organic framework-derived CNTs and a novel CNT aggregate with a three-dimensional ordered macroporous structure.We also examine the role of CNTs in improving the performance of various EES devices such as lith-ium-ion,lithium-metal,lithium-sulfur,sodium,and flexible batteries as well as supercapacitors.We underscore the challenges that remain,including the scalability of CNT synthesis and the integration of CNTs in electrode materials,and propose potential solu-tions and future research directions.The review presents a forward-looking perspective on the pivotal role of CNTs in shaping the fu-ture of sustainable EES technologies.展开更多
文摘Nitrogen doping has been widely used to improve the performance of carbon electrodes in supercapacitors,particularly in terms of their high-frequency response.However,the charge storage and electrolyte ion response mechanisms of different nitrogen dopants at high frequencies are still unclear.In this study,melamine foam carbons with different configurations of surfacedoped N were formed by gradient carbonization,and the effects of the configurations on the high-frequency response behavior of the supercapacitors were analyzed.Using a combination of experiments and first-principle calculations,we found that pyrrolic N,characterized by a higher adsorption energy,increases the charge storage capacity of the electrode at high frequencies.On the other hand,graphitic N,with a lower adsorption energy,increases the speed of ion response.We propose the use of adsorption energy as a practical descriptor for electrode/electrolyte design in high-frequency applications,offering a more universal approach for improving the performance of N-doped carbon materials in supercapacitors.
基金This work was financially supported by the National Natural Science Foundation of China(52101064)Jiangsu Planned Projects for Postdoctoral Research Funds(2020Z158)Industry-University-Research Cooperation Projects(RH2000002728,RH2000002332,RH2100000263).
文摘Due to their outstanding electrical contact properties,Cd-containing silver-matrix electrical contact materials can meet the requirements of high stability and long life for military defense and aerospace applications.In order to further reduce the Cd content under the premise of meeting the high-performance requirements,in this study,high-purity intermediate Ti_(2)Cd powder of MAX phase(Ti_(2)CdC)was synthesized with a pressureless technique and then applied to reinforce the Ag matrix.The Cd content of the as-prepared Ag/Ti_(2)Cd composites was actually reduced by 38.31%compared with conventional Ag/CdO material.Based on the systematic study of the effect of heat treatment temperature on the physical phase,morphology,interface and comprehensive physical properties of Ag/Ti_(2)Cd composites,the preferred samples(heat treated at 400°C for 1 h)showed high density(97.77%),low resistivity(2.34μΩ·cm),moderate hardness(90.8HV),high tensile strength(189.9 MPa),and exhibited good electrical contact performance after 40000 cycles of arc discharging under severe conditions(DC 28 V/20 A).The results of microscopic morphological evolution,phase change and elemental distribution of the electrical contact surface show that the combination of high stability of Ti_(2)Cd reinforcing phase,good interfacial bonding with Ag matrix and improved melt pool viscosity in the primary stage of arc erosion,results in low and stable contact resistance(average value 13.20 mΩ)and welding force(average value 0.6 N),low fluctuation of static force(2.2-2.5 N).The decomposition and absorption energy of Ti_(2)Cd and the arc extinguishing effect of Cd vapor are the main reasons for the stable arcing energy and arcing time of electric contacts in the late stage of arc erosion.
文摘Zinc-ion capacitors(ZICs),which consist of a capacitor-type electrode and a battery-type electrode,not only possess the high power density of supercapacitors and the high energy density of batteries,but also have other advantages such as abundant resources,high safety and environmental friendliness.However,they still face problems such as insufficient specific capacitance,a short cycling life,and narrow operating voltage and temperature ranges,which are hindering their practical use.We provide a comprehensive overview of the fundamental theory of carbon-based ZICs and summarize recent research progress from three perspectives:the carbon cathode,electrolyte and zinc anode.The influence of the structure and surface chemical properties of the carbon materials on the capacitive performance of ZICs is considered together with theoretical guidance for advancing their development and practical use.
文摘Potassium-ion batteries(KIBs)have been seen as a competitive alternative to lithium-ion batteries(LIBs)due to their natural abundance,low cost and rocking chair-like operating mechanism similar to LIBs.Soft carbon has a lower voltage plateau compared to hard carbon and an easily modulated lattice structure compared to graphite,which provides particular advantages in KIBs anodes.Pitch has attracted much attention as a simple,readily available and inexpensive precursor for soft carbon,but its structure is easily damaged during cycling.Herein,the flexible film Pitch@CNF are prepared by uniformly winding reticulated carbon fibers on the surface of pitch-soft carbon via electrostatic spinning technique,which not only enables the pitch to maintain its structure well during cycling and withstand the volume expansion upon K^(+) insertion,but also is conducive to ionic transport of the three-dimensional reticulated structure.Meanwhile,the abundant pores on the carbon fibers can provide more K^(+) active sites.The prepared flexible self-supporting films can be used directly as electrodes without the addition of binders and conductive agents.The reversible capacity is 290 mAh·g^(-1)at a current density of 0.1 A·g^(-1),and the capacity retention rate is 83%after 500 cycles.
基金National Natural Science Foundation of China(62074056)Fundamental Research Funds for the Central Universities。
文摘In recent years,copper iodide(CuI)is an emerging p-type wide bandgap semiconductor with high intrinsic Hall mobility,high optical absorption and large exciton binding energy.However,the spectral response and the photoelectric conversion efficiency are limited for CuI-based heterostructure devices,which is related to the difficulty in fabrication of high-quality CuI thin films on other semiconductors.In this study,a p-CuI/n-Si photodiode has been fabricated through a facile solid-phase iodination method.Although the CuI thin film is polycrystalline with obvious structural defects,the CuI/Si diode shows a high weak-light sensitivity and a high rectification ratio of 7.6×10^(4),indicating a good defect tolerance.This is because of the unilateral heterojunction behavior of the formation of the p^(+)n diode.In this work,the mechanism of photocurrent of the p^(+)n diode has been studied comprehensively.Different monochromatic lasers with wavelengths of 400,505,635 and 780 nm have been selected for testing the photoresponse.Under zero-bias voltage,the device is a unilateral heterojunction,and only visible light can be absorbed at the Si side.On the other hand,when a bias voltage of-3 V is applied,the photodiode is switched to a broader“UV-visible”band response mode.Therefore,the detection wavelength range can be switched between the“Visible”and“UV-visible”bands by adjusting the bias voltage.Moreover,the obtained CuI/Si diode was very sensitive to weak light illumination.A very high detectivity of 10^(13)-1014 Jones can be achieved with a power density as low as 0.5μW/cm^(2),which is significantly higher than that of other Cu-based diodes.These findings underscore the high application potential of CuI when integrated with the traditional Si industry.
文摘There is an urgent need for lithium-ion capacitors(LICs)that have both high energy and high power densities to meet the continuously growing energy storage demands.LICs effectively balance the high energy density of traditional rechargeable batteries with the superior power density and long life of supercapacitors(SCs).Nevertheless,the development of LICs is still hampered by limited kinetic processes and capacity mismatch between the cathode and anode.Metal-organic frameworks(MOFs)and their derivatives have received significant attention because of their extensive specific surface area,different pore structures and topologies,and customizable functional sites,making them compelling candidate materials for achieving high-performance LICs.MOF-derived carbons,known for their exceptional electronic conductivity and large surface area,provide improved charge storage and rapid ion transport.MOF-derived transition metal oxides contribute to high specific capacities and improved electrochemical stability.Additionally,MOF-derived metal compounds/carbons provide combined effects that increase both the capacitive and Faradaic reactions,leading to a superior overall performance.The review begins with an overview of the fundamental principles of LICs,followed by an exploration of synthesis strategies and ligand selection for MOF-based composite materials.It then analyzes the advantages of original MOFs and their derived materials,such as carbon materials and metal compounds,in enhancing LIC performance.Finally,the review discusses the major challenges faced by MOFs and their derivatives in LIC applications and offers future research directions and recommendations.
基金supported by the Fundamental Research Funds for the Central Universities(WK9990000102,WK2030000035).
文摘The study of oxide heteroepitaxy has been hindered by the issues of misfit strain and substrate clamping,which impede both the optimization of performance and the acquisition of a fundamental understanding of oxide systems.Recently,however,the development of freestanding oxide membranes has provided a plausible solution to these substrate limitations.Single-crystalline functional oxide films can be released from their substrates without incurring significant damage and can subsequently be transferred to any substrate of choice.This paper discusses recent advancements in the fabrication,adjustable physical properties,and various applications of freestanding oxide perovskite films.First,we present the primary strategies employed for the synthesis and transfer of these freestanding perovskite thin films.Second,we explore the main functionalities observed in freestanding perovskite oxide thin films,with special attention to the tunable functionalities and physical properties of these freestanding perovskite membranes under varying strain states.Next,we encapsulate three representative devices based on freestanding oxide films.Overall,this review highlights the potential of freestanding oxide films for the study of novel functionalities and flexible electronics.
基金National Natural Science Foundation of China(No.12004070)。
文摘This article studies the role of electrochemical parameters in controlling the morphology of oxidized TiO_(2)nanotubes and the electrochemical performance of modified TiO_(2)nanotubes.Humidity is a key factor for fabricating TiO_(2)nanotubes.When the relative humidity belows 70%,the TiO_(2)nanotubes can be successfully prepared.What's more,by changing the anodization voltage and time,the diameter and the length of TiO_(2)nanotubes can be adjusted.In addition,the TiO_(2)nanotubes are modified through electrochemical self-doping and loading Pt metal particles on the surface of the nanotubes,which promotes the performance of the supercapacitor.The sample anodized at 100 V for 3 h has a specific capacity of up to 2.576 mF/cm~2 at a scan rate of 100 mV/s after self-doping,and its capacity retention rate still remains at 89.55%after 5000 cycles,demonstrating excellent cycling stability.The Pt-modified sample has a specific capacity of up to 3.486 mF/cm~2 at the same scan rate,exhibiting more outstanding electrochemical performance.
基金Project(22109181)supported by the National Natural Science Foundation of ChinaProject(2022JJ40576)supported by the Hunan Provincial Natural Science Foundation of China。
文摘Aqueous zinc ion hybrid capacitors(ZIHCs)are considered one of the most promising electrochemical energy storage systems due to their high safety,environmental friendliness,low cost,and high power density.However,the low energy density and the lack of sustainable design strategies for the cathodes hinder the practical application of ZIHCs.Herein,we design the N and O co-doped porous carbon cathode by annealing metal-organic framework(ZIF-8).ZIF-8 retains the original dodecahedral structure with a high specific surface(2814.67 m^(2)/g)and I_(G)/I_(D) ratio of 1.0 during carbonization and achieves self-doping of N and O heteroatoms.Abundant defect sites are introduced into the porous carbon to provide additional active sites for ion adsorption after the activation of carbonized ZIF-8 by KOH treatment.The ZIHCs assembled with modified ZIF-8 as the cathode and commercial zinc foil as the anode show an energy density of 125 W∙h/kg and a power density of 79 W/kg.In addition,this ZIHCs device achieves capacity retention of 77.8%after 9000 electrochemical cycles,which is attributed to the diverse pore structure and plentiful defect sites of ZIF-8-800(KOH).The proposed strategy may be useful in developing high-performance metal-ion hybrid capacitors for large-scale energy storage.
文摘We report an economical approach for the fabrication of laser-produced graphene(LPG)electrodes,which results in an improved electrochemical performance.Polyimide polymer was used as the starting material for LPG synthesis and was irradiated under ambient conditions with a CO_(2) laser.The prepared LPG samples were characterized by Raman spectroscopy and FTIR,which validated the formation of multilayer graphene containing sp2 hybridized C=C bonds.FE-SEM revealed three-dimensional(3D)sheet-like structures,while HR-TEM images showed lattice planes with an interplanar spacing of approximately 0.33 nm,corres-ponding to the(002)plane of graphene.Their electrochemical performance showed a remarkable areal specific capacitance(CA)of 51 mF cm^(−2)(170 F g^(-1))at 1 mA cm^(−2)(3.3 A g^(-1))in a three-electrode configuration with 1 mol L^(−1) KOH as the aqueous electrolyte.The LPG electrodes produced an energy density of~3.5μWh cm^(−2) and a power density of~350μW cm^(−2),demonstrating signific-ant energy storage ability.They also had an excellent cycling stability,retaining 87%of their specific capacitance after 3000 cycles at 1 mA/cm^(2).A symmetric supercapacitor fabricated with LPG electrodes and the 1 mol L^(−1) KOH electrolyte had a specific capacit-ance of 23 mF cm^(−2) and showed excellent retention after 10000 cycles,showing LPG’s potential for use in supercapacitors.
文摘The quest for sustainable energy storage solutions is more critical than ever,with the rise in global energy demand and the urgency of transition from fossil fuels to renewable sources.Carbon nanotubes(CNTs),with their exceptional electrical conduct-ivity and structural integrity,are at the forefront of this endeavor,offering promising ways for the advance of electrochemical energy storage(EES)devices.This review provides an analysis of the synthesis,properties,and applications of CNTs in the context of EES.We explore the evolution of CNT synthesis methods,including arc discharge,laser ablation,and chemical vapor deposition,and highlight the recent developments in metal-organic framework-derived CNTs and a novel CNT aggregate with a three-dimensional ordered macroporous structure.We also examine the role of CNTs in improving the performance of various EES devices such as lith-ium-ion,lithium-metal,lithium-sulfur,sodium,and flexible batteries as well as supercapacitors.We underscore the challenges that remain,including the scalability of CNT synthesis and the integration of CNTs in electrode materials,and propose potential solu-tions and future research directions.The review presents a forward-looking perspective on the pivotal role of CNTs in shaping the fu-ture of sustainable EES technologies.