A new switching circuit is presented for the application in the frequency range of 0 to 8 GHz. This switch is electro-thermally actuated and exhibits high radio frequency (RF) performance due to its lateral contact ...A new switching circuit is presented for the application in the frequency range of 0 to 8 GHz. This switch is electro-thermally actuated and exhibits high radio frequency (RF) performance due to its lateral contact mechanism, It composes of electroplated nickel and silicon nitride as structural materials. The isolation between bias and signal ports is realized by using silicon nitride. In the case of a small deformation, the relation between the displacement of the vertex and the pre-bending angle is analyzed. The metal contact is realized by in-plane motion and sidewall connection. The switches were fabricated using the MetalMUMPs process from MEMSCAP. The RF testing results show that the switch has a low insertion loss of 0. 9 dB at 8 GHz and a high isolation of 30 dB below 8 GHz.展开更多
A high precision, high antijamming multipoint infrared telemetry system was developed to measure the piston temperature in internal combustion engine. The temperature at the measuring point is converted into correspon...A high precision, high antijamming multipoint infrared telemetry system was developed to measure the piston temperature in internal combustion engine. The temperature at the measuring point is converted into corresponding voltage signal by the thermo-couple first. Then after the V/F stage, the voltage signal is converted into the frequency signal to drive the infrared light-emitting diode to transmit infrared pulses. At the receiver end, a photosensitive audion receives the infrared pulses. After conversion, the voltage recorded by the receiver stands for the magnitude of temperature at the measuring point. Test results of the system indicate that the system is practical and the system can perform multipoint looping temperature measurements for the piston.展开更多
A novel band to band hot electron programming flash memory device,which features programming with high speed,low voltage,low power consumption,large read current and short access time,is proposed.The new memory cell...A novel band to band hot electron programming flash memory device,which features programming with high speed,low voltage,low power consumption,large read current and short access time,is proposed.The new memory cell is programmed by band to band tunneling induced hot electron (BBHE) injection method at the drain,and erased by Fowler Nordheim tunneling through the source region.The work shows that the programming control gate voltage can be reduced to 8V,and the drain leakage current is only 3μA/μm.Under the proposed operating conditions,the program efficiency and the read current rise up to 4×10 -4 and 60μA/μm,respectively,and the program time can be as short as 16μs展开更多
The experimental study of natural convection in allglass evacuated tube solar collectors is performed through the experimental platform of the solar-assisted fuel cell system.The experimental facility includes solar c...The experimental study of natural convection in allglass evacuated tube solar collectors is performed through the experimental platform of the solar-assisted fuel cell system.The experimental facility includes solar collectors with different length and diameter tubes, different coating materials, and with / without guide plates, respectively. Threedimensional mathematical models on natural and forced convections in the solar collectors are established and the experimental data is validated by field synergy and entransy principles. The results of natural convection show that the water temperature increases and thermal efficiency decreases gradually with the evacuated tube length. The thermal efficiency increases when absorption rates increase from 0. 95 to 1. 0 and emission rates decrease from 0. 16 to 0. 06. The thermal efficiency of solar collectors is increased after being equipped with the guide plate, which is attributed to the disappearance of the mixed flowand the enhancement of the heat transfer at the bottom of the evacuated tube. The results of forced convertion indicate that the Reynolds, Nusselt and entransy increments of the horizontal double collectors are higher than those of the vertical single collector while the entransy dissipation is lower than that of the vertical single collector. It is concluded that the solar collectors with guide plates are suitable for natural convection while the double horizontal collectors are suitable for forced convection in the thermal field of solar-assisted fuel cell systems with lowand medium temperatures.展开更多
In order to utilize solar energy effectively and to achieve a higher electrical efficiency by limiting the operating temperature of the photovoltaic (PV) panel, a novel photovoltaic/thermal solar-assisted heat pump ...In order to utilize solar energy effectively and to achieve a higher electrical efficiency by limiting the operating temperature of the photovoltaic (PV) panel, a novel photovoltaic/thermal solar-assisted heat pump (PV/T-SAHP) system was proposed and constructed. The hybrid solar system generates electricity and thermal energy simultaneously. A distributed parameters model of the PWT-SAHP system was developed and applied to analyze the system dynamic performance in terms of PV action, photothermal action and Rankine cycle processes. The simulation results indicated that the coefficient of performance (COP) of the proposed PV/T-SAHP can be much better than that of the conventional heat pump. Both PV-efficiency and photothermic efficiency have been improved considerably. The results also showed that the performance of this PV/T-SAHP system was strongly influenced by the evaporator area, tube pitch and tilt angle of the PV/T evaporator, which are the key factors in PV/T-SAHP system optimization and PV/T evaporator design.展开更多
A novel p-channel selected n-channel divided bit-line NOR(PNOR) flash memory,which features low programming current,low power,high access current,and slight bit-line disturbance,is proposed.By using the source induced...A novel p-channel selected n-channel divided bit-line NOR(PNOR) flash memory,which features low programming current,low power,high access current,and slight bit-line disturbance,is proposed.By using the source induced band-to-band hot electron injection (SIBE) to perform programming and dividing the bit-line to the sub-bit-lines,the programming current and power can be reduced to 3.5μA and 16.5μW with the sub-bit-line width equaling to 128,and a read current of 60μA is obtained.Furthermore,the bit-line disturbance is also significantly alleviated.展开更多
A promising Co3O4/Cu O composite electrode material was successfully synthesized through a facile hydrothermal and calcination process. Effects of the surfactants hexadecyltrimethyl ammonium bromide(CTAB) and polyvi...A promising Co3O4/Cu O composite electrode material was successfully synthesized through a facile hydrothermal and calcination process. Effects of the surfactants hexadecyltrimethyl ammonium bromide(CTAB) and polyvinylpyrrolidone(PVP) on the morphology and electrochemical performance of the composite were investigated. Powder X-ray diffraction(XRD), scanning electron microscopy(SEM), transmission electron microscopy(TEM) and nitrogen adsorption-desorption experiment were employed to characterize the microstructures and morphologies of the composite. Meanwhile, the electrochemical performances of the samples were studied using cyclic voltammetry(CV), galvanostatic charge-discharge test and electrochemical impedance spectroscopy(EIS). The results show that the porous Co3O4/Cu O-CTAB nanoplates own the best performance and exhibits a high specific capacitance of 398 F/g at 1 A/g with almost 100% capacitance retention over 2000 cycles, and it retains 90% of capacitance at 10 A/g.展开更多
A kind of low power connector used e.g. in household appliances was partly burned in routine experiment. The heat sources were four paralleled contacts constructed by springs (Sn/CuSn-alloy) in socket and a plug sheet...A kind of low power connector used e.g. in household appliances was partly burned in routine experiment. The heat sources were four paralleled contacts constructed by springs (Sn/CuSn-alloy) in socket and a plug sheet (Ni/Steel) while mating. The contact interfaces were detected by scanning electronic microscope (SEM) and X-ray energy dispersive spectros- copy (XEDS), obvious wear tracks and various contaminants, including element Si, Al, Na, K, S, Cl, O, etc., were found. The contamination degrees on the four paralleled contacts were different, so that the ratio of average contact resistance on the four contacts was about 5:8:3:1. The maximum contact resistance on contacts of the plug sheet reached 28 ?. The main failure rea- sons were fretting and contamination between the contact interfaces. Fretting simulation showed that connection resistance of connectors was raised up, even to ohms level. When the current increased to 5 A, the socket housing was heated and decom- posed. By the thermal analysis, it was estimated that the connector would be burned under the lower current if the current was not evenly distributed on the four paralleled contacts caused by uneven contamination. Improvement methods for connector failure are also discussed.展开更多
The necessity of the main cable anticorrosion for suspension bridge is described, and operating principles and composition of main cable dehumidification system are analyzed. An idea using the waste heat of high tempe...The necessity of the main cable anticorrosion for suspension bridge is described, and operating principles and composition of main cable dehumidification system are analyzed. An idea using the waste heat of high temperature outlet air of dehumidification system to heat up regeneration air of rotary-type dehumidifier is put forward in this paper. The concrete scheme is to install a heat exchanger on air-out pipeline of roots blower and air-in pipeline of regeneration electric heater of rotary dehumidifier. Air preheated by the heat exchanger enters regeneration electric heater of rotary-type dehumidifier. Energy conservation of main cable dehumidification system for the Yangtze River highway bridge is calculated, and the results show that energy conservation rate can reach 44 %.展开更多
Graphene under high temperature was prepared and loaded on Ni foam.Then,cobalt tetroxide precursor was grown on Ni foam in situ by the hydrothermal method.Finally,the sample was burned at high temperature to obtain Co...Graphene under high temperature was prepared and loaded on Ni foam.Then,cobalt tetroxide precursor was grown on Ni foam in situ by the hydrothermal method.Finally,the sample was burned at high temperature to obtain Co_(3)O_(4)+graphene@Ni.The hydrothermal method used in this paper is easy to operate,with low-risk factors and environmental protection.The prepared Co_(3)O_(4)+graphene@Ni electrode exhibits superior electrochemical performance than Co_(3)O_(4)@Ni electrode.At a current density of 1 A/g,the specific capacitance of the Co_(3)O_(4)+graphene@Ni electrode calculated by a charge-discharge test is 935 F/g,which is much larger than that of Co_(3)O_(4)@Ni electrode of 340 F/g.展开更多
In this paper, eddy current sensors and thermocouple sensors were employed to measure the thermal field and thermal deformation of a spindle of a telescopic CNC boring-milling machine tool, respectively. A linear regr...In this paper, eddy current sensors and thermocouple sensors were employed to measure the thermal field and thermal deformation of a spindle of a telescopic CNC boring-milling machine tool, respectively. A linear regression method was proposed to establish the thermal error model. Furthermore, two compensation methods were implemented based on the SIEMENS 840D system by using the feed shaft of z direction and telescopic spindle respectively. Experimental results showed that the thermal error could be reduced by 73.79% when using the second compensation method, and the thermal error could be eliminated by using the two compensation methods effectively.展开更多
A reduced graphene oxide/Ni(OH)2 composite with excellent supercapacitive performance was synthesized by a facile hydrothermal route without organic solvents or templates used.XRD and SEM results reveal that the nicke...A reduced graphene oxide/Ni(OH)2 composite with excellent supercapacitive performance was synthesized by a facile hydrothermal route without organic solvents or templates used.XRD and SEM results reveal that the nickel hydroxide,which crystallizes into hexagonal β-Ni(OH)2 nanoflakes with a diameter less than 200 nm and a thickness of about 10 nm,is well combined with the reduced graphene oxide sheets.Electrochemical performance of the synthesized composite as an electrode material was investigated by cyclic voltammetry,electrochemical impedance spectroscopy and galvanostatic charge/discharge measurements.Its specific capacitance is determined to be 1672 F/g at a scan rate of 2 mV/s,and 696 F/g at a high scan rate of 50 mV/s.After 2000 cycles at a current density of 10 A/g,the composite exhibits a specific capacitance of 969 F/g,retaining about 86% of its initial capacitance.The composite delivers a high energy density of 83.6 W·h/kg at a power density of 1.0 kW/kg.The excellent supercapacitive performance along with the easy synthesis method allows the synthesized composite to be promising for supercapacitor applications.展开更多
An equivalent electrical network method is presented in this paper to analyze the cooling characteristics of a laser diode module (LDM).And a modified equivalent model of a thermoelectric cooler (TEC) with an adjuncti...An equivalent electrical network method is presented in this paper to analyze the cooling characteristics of a laser diode module (LDM).And a modified equivalent model of a thermoelectric cooler (TEC) with an adjunctive thermal resistance and a contact resistance is proposed.The performance of a commercial TEC has been simulated.The thermal analysis of a LDM incorporated with a TEC has been performed by using an equivalent circuit model of the LDM.In the analysis the change of LD current,TEC current,and the ambient temperature are all considered.It shows that the equivalent circuit approach is an effective tool for the qualitative analysis of TEC and LDM.展开更多
This paper presents a novel mega-Hz-level super high frequency zero-voltage soft-switching converter for induction heating power supplies. The prominent advantage of this topology is that it can absorb both inductive ...This paper presents a novel mega-Hz-level super high frequency zero-voltage soft-switching converter for induction heating power supplies. The prominent advantage of this topology is that it can absorb both inductive and capacitive parasitic components in the converter. The switch devices operate in a zero-voltage soft-switching mode. Consequently, the high voltage and high current spikes caused by parasitic inductors or capacitors oscillation do not occur in this circuit, and the high power loss caused by high frequency switching can be greatly reduced. A large value inductor is adopted between the input capacitor and the switches, thus, this novel converter shares the benefits of both voltage-type and current-type circuits simultaneously, and there are no needs of dead time between two switches. The working principles in different modes are introduced. Results of simulation and experiments operated at around 1 MHz frequency verify the validity of parasitic components absorption and show that this convener is competent for super high frequency applications.展开更多
Metal organic chemical vapor deposition(MOCVD) is a key equipment in the manufacturing of semiconductor optoelectronic devices and microwave devices in industry. Heating system is a vital part of MOCVD. Specific heati...Metal organic chemical vapor deposition(MOCVD) is a key equipment in the manufacturing of semiconductor optoelectronic devices and microwave devices in industry. Heating system is a vital part of MOCVD. Specific heating device and thermal control technology are needed for each new reactor design. By using resistance-wire heating MOCVD reaction chamber model, thermal analysis and structure optimization of the reactor were developed from the vertical position and the distance between coils of the resistance-wire heater. It is indicated that, within a certain range, the average temperature of the graphite susceptor varies linearly with the vertical distance of heater to susceptor, and with the changed distances between the coils; furthermore, single resistance-wire heater should be placed loosely in the internal and tightly in the external. The modulate accuracy of the temperature field approximately equals the change of the average temperature corresponding to the change of the coil position.展开更多
We derive a formula of the nonadiabatic noncyclic Pancharatnam phase for a mesoscopic circuit with coupled inductors and capacitors. It shows that, because of coupling effect, the circuit is in squeezed quantum state ...We derive a formula of the nonadiabatic noncyclic Pancharatnam phase for a mesoscopic circuit with coupled inductors and capacitors. It shows that, because of coupling effect, the circuit is in squeezed quantum state initially, and the time evolution of Pancharatnam phase exhibits an oscillation in a complex way. Especially we find that when the capacity of the coupled capacitors is larger than that of other ones in the circuit, with the variation of time Pancharatnam phase becomes nearly periodic square-wave, which perhaps can provide a new approach for the realization of quantum logic gate.展开更多
The generation of oxide charge for 4nm pMOSFETs under hot-carrier stress is investigated by the charge pumping measurements.Firstly,the direct experimental evidences of logarithmic time dependence of hole trapping is ...The generation of oxide charge for 4nm pMOSFETs under hot-carrier stress is investigated by the charge pumping measurements.Firstly,the direct experimental evidences of logarithmic time dependence of hole trapping is observed for pMOSFETs with different channel lengths under hot-carrier stress.Thus,the relationships of oxide charge generation,including electron trapping and hole trapping effects,with different stress voltages and channel lengths are analyzed.It is also found that there is a two-step process in the generation of oxide charge for pMOSFETs.For a short stress time,electron trapping is predominant,whereas for a long stress time,hole trapping dominates the generation of oxide charge.展开更多
The upper mixed layer (UML) depth obtained from temperature is very close to that from density:the maximum is about 15m. This indicates that temperature is a good indicator of mixed layer during measurements. When the...The upper mixed layer (UML) depth obtained from temperature is very close to that from density:the maximum is about 15m. This indicates that temperature is a good indicator of mixed layer during measurements. When the surface heat flux is balanced by a cross-shore heat flux, the surface mixed layer depth obtained from the WM model (Weatherly and Martin, 1978),hPRT, is roughly the same as observed. The mixed layer depth calculated from the PWP model (Price, Weller and Pinkel, 1986) is close to the depth obtained from thermistor chain temperature data. The results show that both the WM model and PWP model can provide a good estimate of stratification in the study area during the cruise. The value of log( h/u3) is about 9.5 in the study area, which shows that the study area is strongly stratified in summer. Observations on the northern Portugal shelf reveal high variability in stability, giving rise to semi-diurnal, semi-monthly and diurnal oscillations, and long term variations. The fortnightly oscillations are highlighted by post-springs and post-neaps. The stirring of spring tide is reinforced by strong wind mixing which brings about complete vertical homogeneity everywhere. The semi-diurnal periodic stratification is very pronounced because the major axis of the tidal ellipse is orientated acrossshore, even though the tidal current is weak in this area, the maximum stratification is observed around the middle of ebb, and, the water at this time is much warmer. The diurnal oscillation results from the upper ocean response to heating and wind mixing when solar heating warms and stabilizes the upper ocean. There is a clear relationship between upper mixed layer depth and wind-stress magnitude at subtidal frequencies. Stronger winds result in a deeper surface mixed layer. Typically, the surface mixed layer depth lags the wind stress by 6 -12 h.展开更多
A long-pulse plasma discharge for more than 30 min. was achieved on the Large Helical Device (LHD). A plasma of ne = 0.8 × 10^19 m^-3 and T10 = 2.0 keV was sustained with PICH = 0.52 MW, PECH = 0.1 MW and avera...A long-pulse plasma discharge for more than 30 min. was achieved on the Large Helical Device (LHD). A plasma of ne = 0.8 × 10^19 m^-3 and T10 = 2.0 keV was sustained with PICH = 0.52 MW, PECH = 0.1 MW and averaged PNBI = 0.067 MW. Total injected heating energy was 1.3 G J, which was a quarter of the prepared RF heating energy. One of the keys to the success of the experiment was a dispersion of the local plasma heat load to divertors, accomplished by shifting the magnetic axis inward and outward.展开更多
文摘A new switching circuit is presented for the application in the frequency range of 0 to 8 GHz. This switch is electro-thermally actuated and exhibits high radio frequency (RF) performance due to its lateral contact mechanism, It composes of electroplated nickel and silicon nitride as structural materials. The isolation between bias and signal ports is realized by using silicon nitride. In the case of a small deformation, the relation between the displacement of the vertex and the pre-bending angle is analyzed. The metal contact is realized by in-plane motion and sidewall connection. The switches were fabricated using the MetalMUMPs process from MEMSCAP. The RF testing results show that the switch has a low insertion loss of 0. 9 dB at 8 GHz and a high isolation of 30 dB below 8 GHz.
文摘A high precision, high antijamming multipoint infrared telemetry system was developed to measure the piston temperature in internal combustion engine. The temperature at the measuring point is converted into corresponding voltage signal by the thermo-couple first. Then after the V/F stage, the voltage signal is converted into the frequency signal to drive the infrared light-emitting diode to transmit infrared pulses. At the receiver end, a photosensitive audion receives the infrared pulses. After conversion, the voltage recorded by the receiver stands for the magnitude of temperature at the measuring point. Test results of the system indicate that the system is practical and the system can perform multipoint looping temperature measurements for the piston.
文摘A novel band to band hot electron programming flash memory device,which features programming with high speed,low voltage,low power consumption,large read current and short access time,is proposed.The new memory cell is programmed by band to band tunneling induced hot electron (BBHE) injection method at the drain,and erased by Fowler Nordheim tunneling through the source region.The work shows that the programming control gate voltage can be reduced to 8V,and the drain leakage current is only 3μA/μm.Under the proposed operating conditions,the program efficiency and the read current rise up to 4×10 -4 and 60μA/μm,respectively,and the program time can be as short as 16μs
基金The National Natural Science Foundation of China(No.51376110,51541604)the Major International(Regional) Joint Research Project of the National Natural Science Foundation of China(No.61320106011)
文摘The experimental study of natural convection in allglass evacuated tube solar collectors is performed through the experimental platform of the solar-assisted fuel cell system.The experimental facility includes solar collectors with different length and diameter tubes, different coating materials, and with / without guide plates, respectively. Threedimensional mathematical models on natural and forced convections in the solar collectors are established and the experimental data is validated by field synergy and entransy principles. The results of natural convection show that the water temperature increases and thermal efficiency decreases gradually with the evacuated tube length. The thermal efficiency increases when absorption rates increase from 0. 95 to 1. 0 and emission rates decrease from 0. 16 to 0. 06. The thermal efficiency of solar collectors is increased after being equipped with the guide plate, which is attributed to the disappearance of the mixed flowand the enhancement of the heat transfer at the bottom of the evacuated tube. The results of forced convertion indicate that the Reynolds, Nusselt and entransy increments of the horizontal double collectors are higher than those of the vertical single collector while the entransy dissipation is lower than that of the vertical single collector. It is concluded that the solar collectors with guide plates are suitable for natural convection while the double horizontal collectors are suitable for forced convection in the thermal field of solar-assisted fuel cell systems with lowand medium temperatures.
基金the National Natural Science Foundation ofChina (No. 50708105)partly supported by the Natural ScienceFoundation of Anhui Province (No. 070414161), China
文摘In order to utilize solar energy effectively and to achieve a higher electrical efficiency by limiting the operating temperature of the photovoltaic (PV) panel, a novel photovoltaic/thermal solar-assisted heat pump (PV/T-SAHP) system was proposed and constructed. The hybrid solar system generates electricity and thermal energy simultaneously. A distributed parameters model of the PWT-SAHP system was developed and applied to analyze the system dynamic performance in terms of PV action, photothermal action and Rankine cycle processes. The simulation results indicated that the coefficient of performance (COP) of the proposed PV/T-SAHP can be much better than that of the conventional heat pump. Both PV-efficiency and photothermic efficiency have been improved considerably. The results also showed that the performance of this PV/T-SAHP system was strongly influenced by the evaporator area, tube pitch and tilt angle of the PV/T evaporator, which are the key factors in PV/T-SAHP system optimization and PV/T evaporator design.
文摘A novel p-channel selected n-channel divided bit-line NOR(PNOR) flash memory,which features low programming current,low power,high access current,and slight bit-line disturbance,is proposed.By using the source induced band-to-band hot electron injection (SIBE) to perform programming and dividing the bit-line to the sub-bit-lines,the programming current and power can be reduced to 3.5μA and 16.5μW with the sub-bit-line width equaling to 128,and a read current of 60μA is obtained.Furthermore,the bit-line disturbance is also significantly alleviated.
基金Project(21471162)supported by the National Natural Science Foundation of ChinaProject(2014LY36)supported by the Science and Technology Project of Longyan CityChina
文摘A promising Co3O4/Cu O composite electrode material was successfully synthesized through a facile hydrothermal and calcination process. Effects of the surfactants hexadecyltrimethyl ammonium bromide(CTAB) and polyvinylpyrrolidone(PVP) on the morphology and electrochemical performance of the composite were investigated. Powder X-ray diffraction(XRD), scanning electron microscopy(SEM), transmission electron microscopy(TEM) and nitrogen adsorption-desorption experiment were employed to characterize the microstructures and morphologies of the composite. Meanwhile, the electrochemical performances of the samples were studied using cyclic voltammetry(CV), galvanostatic charge-discharge test and electrochemical impedance spectroscopy(EIS). The results show that the porous Co3O4/Cu O-CTAB nanoplates own the best performance and exhibits a high specific capacitance of 398 F/g at 1 A/g with almost 100% capacitance retention over 2000 cycles, and it retains 90% of capacitance at 10 A/g.
文摘A kind of low power connector used e.g. in household appliances was partly burned in routine experiment. The heat sources were four paralleled contacts constructed by springs (Sn/CuSn-alloy) in socket and a plug sheet (Ni/Steel) while mating. The contact interfaces were detected by scanning electronic microscope (SEM) and X-ray energy dispersive spectros- copy (XEDS), obvious wear tracks and various contaminants, including element Si, Al, Na, K, S, Cl, O, etc., were found. The contamination degrees on the four paralleled contacts were different, so that the ratio of average contact resistance on the four contacts was about 5:8:3:1. The maximum contact resistance on contacts of the plug sheet reached 28 ?. The main failure rea- sons were fretting and contamination between the contact interfaces. Fretting simulation showed that connection resistance of connectors was raised up, even to ohms level. When the current increased to 5 A, the socket housing was heated and decom- posed. By the thermal analysis, it was estimated that the connector would be burned under the lower current if the current was not evenly distributed on the four paralleled contacts caused by uneven contamination. Improvement methods for connector failure are also discussed.
基金National Science and Technology Support Program of China ( No. 2009BAG15B01)Key Pro-grams for Science and Technology Development of Chinese Transportation Industry( No. 2008-353-332-170)
文摘The necessity of the main cable anticorrosion for suspension bridge is described, and operating principles and composition of main cable dehumidification system are analyzed. An idea using the waste heat of high temperature outlet air of dehumidification system to heat up regeneration air of rotary-type dehumidifier is put forward in this paper. The concrete scheme is to install a heat exchanger on air-out pipeline of roots blower and air-in pipeline of regeneration electric heater of rotary dehumidifier. Air preheated by the heat exchanger enters regeneration electric heater of rotary-type dehumidifier. Energy conservation of main cable dehumidification system for the Yangtze River highway bridge is calculated, and the results show that energy conservation rate can reach 44 %.
基金Project(21502014)supported by the National Natural Science Foundation of ChinaProjects(20180550736,2019-ZD 0117)supported by the Natural Science Foundation of Liaoning Province,China+1 种基金Projects(JDL 2019004,JDL 2017027)supported by the Research Foundation of Educational Committee of Liaoning Province,ChinaProject(191008-K)supported by Guangxi Key Laboratory of Information Materials(Guilin University of Electronic Technology),China。
文摘Graphene under high temperature was prepared and loaded on Ni foam.Then,cobalt tetroxide precursor was grown on Ni foam in situ by the hydrothermal method.Finally,the sample was burned at high temperature to obtain Co_(3)O_(4)+graphene@Ni.The hydrothermal method used in this paper is easy to operate,with low-risk factors and environmental protection.The prepared Co_(3)O_(4)+graphene@Ni electrode exhibits superior electrochemical performance than Co_(3)O_(4)@Ni electrode.At a current density of 1 A/g,the specific capacitance of the Co_(3)O_(4)+graphene@Ni electrode calculated by a charge-discharge test is 935 F/g,which is much larger than that of Co_(3)O_(4)@Ni electrode of 340 F/g.
文摘In this paper, eddy current sensors and thermocouple sensors were employed to measure the thermal field and thermal deformation of a spindle of a telescopic CNC boring-milling machine tool, respectively. A linear regression method was proposed to establish the thermal error model. Furthermore, two compensation methods were implemented based on the SIEMENS 840D system by using the feed shaft of z direction and telescopic spindle respectively. Experimental results showed that the thermal error could be reduced by 73.79% when using the second compensation method, and the thermal error could be eliminated by using the two compensation methods effectively.
基金Project(KJ2012A045) supported by the Natural Science Foundation of Education Commission of Anhui Province,China
文摘A reduced graphene oxide/Ni(OH)2 composite with excellent supercapacitive performance was synthesized by a facile hydrothermal route without organic solvents or templates used.XRD and SEM results reveal that the nickel hydroxide,which crystallizes into hexagonal β-Ni(OH)2 nanoflakes with a diameter less than 200 nm and a thickness of about 10 nm,is well combined with the reduced graphene oxide sheets.Electrochemical performance of the synthesized composite as an electrode material was investigated by cyclic voltammetry,electrochemical impedance spectroscopy and galvanostatic charge/discharge measurements.Its specific capacitance is determined to be 1672 F/g at a scan rate of 2 mV/s,and 696 F/g at a high scan rate of 50 mV/s.After 2000 cycles at a current density of 10 A/g,the composite exhibits a specific capacitance of 969 F/g,retaining about 86% of its initial capacitance.The composite delivers a high energy density of 83.6 W·h/kg at a power density of 1.0 kW/kg.The excellent supercapacitive performance along with the easy synthesis method allows the synthesized composite to be promising for supercapacitor applications.
文摘An equivalent electrical network method is presented in this paper to analyze the cooling characteristics of a laser diode module (LDM).And a modified equivalent model of a thermoelectric cooler (TEC) with an adjunctive thermal resistance and a contact resistance is proposed.The performance of a commercial TEC has been simulated.The thermal analysis of a LDM incorporated with a TEC has been performed by using an equivalent circuit model of the LDM.In the analysis the change of LD current,TEC current,and the ambient temperature are all considered.It shows that the equivalent circuit approach is an effective tool for the qualitative analysis of TEC and LDM.
文摘This paper presents a novel mega-Hz-level super high frequency zero-voltage soft-switching converter for induction heating power supplies. The prominent advantage of this topology is that it can absorb both inductive and capacitive parasitic components in the converter. The switch devices operate in a zero-voltage soft-switching mode. Consequently, the high voltage and high current spikes caused by parasitic inductors or capacitors oscillation do not occur in this circuit, and the high power loss caused by high frequency switching can be greatly reduced. A large value inductor is adopted between the input capacitor and the switches, thus, this novel converter shares the benefits of both voltage-type and current-type circuits simultaneously, and there are no needs of dead time between two switches. The working principles in different modes are introduced. Results of simulation and experiments operated at around 1 MHz frequency verify the validity of parasitic components absorption and show that this convener is competent for super high frequency applications.
基金Projects(61376076,61274026,61377024)supported by the National Natural Science Foundation of ChinaProjects(12C0108,13C321)supported by the Scientific Research Fund of Hunan Provincial Education Department,ChinaProjects(2013FJ2011,2013FJ4232)supported by the Science and Technology Plan of Hunan Province,China
文摘Metal organic chemical vapor deposition(MOCVD) is a key equipment in the manufacturing of semiconductor optoelectronic devices and microwave devices in industry. Heating system is a vital part of MOCVD. Specific heating device and thermal control technology are needed for each new reactor design. By using resistance-wire heating MOCVD reaction chamber model, thermal analysis and structure optimization of the reactor were developed from the vertical position and the distance between coils of the resistance-wire heater. It is indicated that, within a certain range, the average temperature of the graphite susceptor varies linearly with the vertical distance of heater to susceptor, and with the changed distances between the coils; furthermore, single resistance-wire heater should be placed loosely in the internal and tightly in the external. The modulate accuracy of the temperature field approximately equals the change of the average temperature corresponding to the change of the coil position.
文摘We derive a formula of the nonadiabatic noncyclic Pancharatnam phase for a mesoscopic circuit with coupled inductors and capacitors. It shows that, because of coupling effect, the circuit is in squeezed quantum state initially, and the time evolution of Pancharatnam phase exhibits an oscillation in a complex way. Especially we find that when the capacity of the coupled capacitors is larger than that of other ones in the circuit, with the variation of time Pancharatnam phase becomes nearly periodic square-wave, which perhaps can provide a new approach for the realization of quantum logic gate.
文摘The generation of oxide charge for 4nm pMOSFETs under hot-carrier stress is investigated by the charge pumping measurements.Firstly,the direct experimental evidences of logarithmic time dependence of hole trapping is observed for pMOSFETs with different channel lengths under hot-carrier stress.Thus,the relationships of oxide charge generation,including electron trapping and hole trapping effects,with different stress voltages and channel lengths are analyzed.It is also found that there is a two-step process in the generation of oxide charge for pMOSFETs.For a short stress time,electron trapping is predominant,whereas for a long stress time,hole trapping dominates the generation of oxide charge.
基金supported by the project of NSFC(No.49906001)the Excellent Young Teacher Award Foundation of State Education Ministry(2000 No.6).
文摘The upper mixed layer (UML) depth obtained from temperature is very close to that from density:the maximum is about 15m. This indicates that temperature is a good indicator of mixed layer during measurements. When the surface heat flux is balanced by a cross-shore heat flux, the surface mixed layer depth obtained from the WM model (Weatherly and Martin, 1978),hPRT, is roughly the same as observed. The mixed layer depth calculated from the PWP model (Price, Weller and Pinkel, 1986) is close to the depth obtained from thermistor chain temperature data. The results show that both the WM model and PWP model can provide a good estimate of stratification in the study area during the cruise. The value of log( h/u3) is about 9.5 in the study area, which shows that the study area is strongly stratified in summer. Observations on the northern Portugal shelf reveal high variability in stability, giving rise to semi-diurnal, semi-monthly and diurnal oscillations, and long term variations. The fortnightly oscillations are highlighted by post-springs and post-neaps. The stirring of spring tide is reinforced by strong wind mixing which brings about complete vertical homogeneity everywhere. The semi-diurnal periodic stratification is very pronounced because the major axis of the tidal ellipse is orientated acrossshore, even though the tidal current is weak in this area, the maximum stratification is observed around the middle of ebb, and, the water at this time is much warmer. The diurnal oscillation results from the upper ocean response to heating and wind mixing when solar heating warms and stabilizes the upper ocean. There is a clear relationship between upper mixed layer depth and wind-stress magnitude at subtidal frequencies. Stronger winds result in a deeper surface mixed layer. Typically, the surface mixed layer depth lags the wind stress by 6 -12 h.
基金supported in part by the JSPS-CAS Core-University Program in the field of Plasma and Nuclear Fusion
文摘A long-pulse plasma discharge for more than 30 min. was achieved on the Large Helical Device (LHD). A plasma of ne = 0.8 × 10^19 m^-3 and T10 = 2.0 keV was sustained with PICH = 0.52 MW, PECH = 0.1 MW and averaged PNBI = 0.067 MW. Total injected heating energy was 1.3 G J, which was a quarter of the prepared RF heating energy. One of the keys to the success of the experiment was a dispersion of the local plasma heat load to divertors, accomplished by shifting the magnetic axis inward and outward.