When boost power factor correction(PFC) circuit works with large scale load fluctuations, it is easy to cause a higher total harmonic distortion and a lower power factor because of traditional controllers and inductor...When boost power factor correction(PFC) circuit works with large scale load fluctuations, it is easy to cause a higher total harmonic distortion and a lower power factor because of traditional controllers and inductor current mode. To solve this problem, this paper proposes a PFC control system, which can operate with load fluctuations up to 1 000 W by using duty cycle feed-forward control theory to achieve smooth switching mode. The duty cycles in the next period of the control system are pre-estimated in the current cycle, which enhances the speeds of AD samplers and switching frequency, and reduces the cost and volume of the equipment to some extent. Introductions of system decoupling and feed-forward of input-voltage greatly improve the system performance. Both theoretical simulation and experimental results prove the advantage of the proposed scheme.展开更多
In order to improve the power factor of the circuit, the article takes STM32 as core circuit to development reactive power compensation controller for low voltage intelligent reactive compensation. Circuit can detect ...In order to improve the power factor of the circuit, the article takes STM32 as core circuit to development reactive power compensation controller for low voltage intelligent reactive compensation. Circuit can detect electricity distribution network parameters, and send messages to mobile phone via SMS text messages by TC35 module, remote control compensation capacitor configuration parameters. Circuit with a flexible, reliable, convenient and practical features. This paper analyzes the structure of the controller hardware and software, and describes the hardware schematic circuit diagram and software diagram of the controller. Controller with integrated control, maximize the use of compensating equipment to improve grid power quality.展开更多
Authors developed a highly effective brushless DC motor with a simple operation principle. If the operation principle of the motor is simple, a drive circuit will also become simple and its production cost will be low...Authors developed a highly effective brushless DC motor with a simple operation principle. If the operation principle of the motor is simple, a drive circuit will also become simple and its production cost will be lower. From the above fact, Minato motor was noticed. In this motor, a unidirectional current flows in the electromagnets. In other words, unidirectional windings are used. In this motor, only strong repulsive force is utilized when a permanent magnet of a rotor and an electromagnet of a stator are adjacent. Hence, torque constant becomes higher and the efficiency of the motor is high. However, an effective value of the electromagnetic current increases because a large current flows in a short period. Therefore, copper loss increases and the efficiency of the motor decreases. In order to solve above defects, a new motor is proposed. From the experiment, it is clarified that the efficiency of the proposed motor is higher than that of the commercial motors.展开更多
Traveling wave differential protection has the ability,in theory,to entirely eliminate the effects of distributed capacitive current,but it cannot be applied on series-capacitor-compensated lines directly.In this pape...Traveling wave differential protection has the ability,in theory,to entirely eliminate the effects of distributed capacitive current,but it cannot be applied on series-capacitor-compensated lines directly.In this paper,unbalanced output of conventional forward and reverse traveling wave differential currents under normal operating conditions and external faults was analyzed.A new type of traveling wave differential current was defined by combining forward and reverse traveling wave differential currents.Expressions of the defined differential current when internal and external faults occur were deduced.On this basis,a new principle of traveling wave module differential protection on series-capacitor-compensated lines was proposed,and characteristics of module differential current under different faults were analyzed.The priniciple is immune to line distributed capacity,series capacitor positions,and presence or absence of MOV breakovers.The validity of this scheme was verified by PSACD simulations.展开更多
基金Supported by the National Basic Research Program of China("973"Program,No.2009CB219700)
文摘When boost power factor correction(PFC) circuit works with large scale load fluctuations, it is easy to cause a higher total harmonic distortion and a lower power factor because of traditional controllers and inductor current mode. To solve this problem, this paper proposes a PFC control system, which can operate with load fluctuations up to 1 000 W by using duty cycle feed-forward control theory to achieve smooth switching mode. The duty cycles in the next period of the control system are pre-estimated in the current cycle, which enhances the speeds of AD samplers and switching frequency, and reduces the cost and volume of the equipment to some extent. Introductions of system decoupling and feed-forward of input-voltage greatly improve the system performance. Both theoretical simulation and experimental results prove the advantage of the proposed scheme.
文摘In order to improve the power factor of the circuit, the article takes STM32 as core circuit to development reactive power compensation controller for low voltage intelligent reactive compensation. Circuit can detect electricity distribution network parameters, and send messages to mobile phone via SMS text messages by TC35 module, remote control compensation capacitor configuration parameters. Circuit with a flexible, reliable, convenient and practical features. This paper analyzes the structure of the controller hardware and software, and describes the hardware schematic circuit diagram and software diagram of the controller. Controller with integrated control, maximize the use of compensating equipment to improve grid power quality.
文摘Authors developed a highly effective brushless DC motor with a simple operation principle. If the operation principle of the motor is simple, a drive circuit will also become simple and its production cost will be lower. From the above fact, Minato motor was noticed. In this motor, a unidirectional current flows in the electromagnets. In other words, unidirectional windings are used. In this motor, only strong repulsive force is utilized when a permanent magnet of a rotor and an electromagnet of a stator are adjacent. Hence, torque constant becomes higher and the efficiency of the motor is high. However, an effective value of the electromagnetic current increases because a large current flows in a short period. Therefore, copper loss increases and the efficiency of the motor decreases. In order to solve above defects, a new motor is proposed. From the experiment, it is clarified that the efficiency of the proposed motor is higher than that of the commercial motors.
文摘Traveling wave differential protection has the ability,in theory,to entirely eliminate the effects of distributed capacitive current,but it cannot be applied on series-capacitor-compensated lines directly.In this paper,unbalanced output of conventional forward and reverse traveling wave differential currents under normal operating conditions and external faults was analyzed.A new type of traveling wave differential current was defined by combining forward and reverse traveling wave differential currents.Expressions of the defined differential current when internal and external faults occur were deduced.On this basis,a new principle of traveling wave module differential protection on series-capacitor-compensated lines was proposed,and characteristics of module differential current under different faults were analyzed.The priniciple is immune to line distributed capacity,series capacitor positions,and presence or absence of MOV breakovers.The validity of this scheme was verified by PSACD simulations.