It is crucial to understand the mechanism of low temperature CO oxidation reaction catalyzed by gold nanoparticles so as to find out the origin of the high catalytic reactivity and extend the indus‐trialization appli...It is crucial to understand the mechanism of low temperature CO oxidation reaction catalyzed by gold nanoparticles so as to find out the origin of the high catalytic reactivity and extend the indus‐trialization applications of nano gold catalysts. In this work, some theoretical works on CO adsorp‐tion, O2 adsorption, atomic oxygen adsorption, formation of surface gold oxide films, reaction mechanisms of CO oxidation involving O2 reaction with CO and O2 dissociation before reacting with CO on gold surfaces and Au/metal oxide were summarized, and the influences of coordination number, charge transfer and relativity of gold on CO oxidation reaction were briefly reviewed. It was found that CO reaction mechanism depended on the systems with or without oxide and the strong relativistic effects might play an important role in CO oxidation reaction on gold catalysts. In particular, the relativistic effects are related to the unique behaviors of CO adsorption, O adsorption, O2 activation on gold surfaces, effects of coordination number and the wide gap between the chem‐ical inertness of bulk gold and high catalytic activity of nano gold. The present work helps us to understand the CO oxidation reaction mechanism on gold catalysts and the influence of relativistic effects on gold catalysis.展开更多
A new method of calculating finely the soft X ray spectra of hydrogenlike highly ionized states is presented. It is based on the relation of the ionicity and the ionization energies of hydrogenlike atoms and the new...A new method of calculating finely the soft X ray spectra of hydrogenlike highly ionized states is presented. It is based on the relation of the ionicity and the ionization energies of hydrogenlike atoms and the new model of potential function of hydrogenlike atoms. The relativistic revision and the spin orbit couping of excitation energy levels are taken into account. The calculated results are in good agreement with the experiments.展开更多
Low lying excited states of beryllium are calculated with multiconfiguration interaction method. The relativisitic corrections and mass polarization are included. The oscillator strength and radiation rates are also ...Low lying excited states of beryllium are calculated with multiconfiguration interaction method. The relativisitic corrections and mass polarization are included. The oscillator strength and radiation rates are also calculated. Our results are in good agreement with other theoretical data.展开更多
Low-lying electronic states of the lutetium dimer (Lu2) were studied based on density functional theory (DFT) using ten different density functionals together with three different relativistic effective core pseud...Low-lying electronic states of the lutetium dimer (Lu2) were studied based on density functional theory (DFT) using ten different density functionals together with three different relativistic effective core pseudopotentials (RECPs). Relative state energies, equilibrium bond lengths, vibrational frequencies, and ground-state dissociation energies were evaluated. It was found that the ground state is a triplet state irrespective of the type of functional and RECP used. This result is in contrast with a previous DFT calculation which gave a singlet ground state for Lu2. By comparing with the high-level ab initio and available experimental results, it is evident that the hybrid-GGA functionals combined with the Stuttgart smallcore RECP yield the best overall agreement for the properties under study. The effects of Hartree-Fock exchange in B3LYP functional on the calculated bond length and dissociation energy of the ground state were examined, and rationalized in terms of 5d participation in Lu-Lu covalent bonding.展开更多
In 1935 Dirac established the physical wave equations in the de-Sitter spaces but neither energy-momentum operators nor their conservative laws were given. In this article it is proved that in the de-Sitter group ther...In 1935 Dirac established the physical wave equations in the de-Sitter spaces but neither energy-momentum operators nor their conservative laws were given. In this article it is proved that in the de-Sitter group there is a subgroup group isomorphic to the Heisenberg group and the generators of this groups are the energy-momentum operators which obey a conservative law.展开更多
基金supported by the National Natural Science Foundation of China (21103165)
文摘It is crucial to understand the mechanism of low temperature CO oxidation reaction catalyzed by gold nanoparticles so as to find out the origin of the high catalytic reactivity and extend the indus‐trialization applications of nano gold catalysts. In this work, some theoretical works on CO adsorp‐tion, O2 adsorption, atomic oxygen adsorption, formation of surface gold oxide films, reaction mechanisms of CO oxidation involving O2 reaction with CO and O2 dissociation before reacting with CO on gold surfaces and Au/metal oxide were summarized, and the influences of coordination number, charge transfer and relativity of gold on CO oxidation reaction were briefly reviewed. It was found that CO reaction mechanism depended on the systems with or without oxide and the strong relativistic effects might play an important role in CO oxidation reaction on gold catalysts. In particular, the relativistic effects are related to the unique behaviors of CO adsorption, O adsorption, O2 activation on gold surfaces, effects of coordination number and the wide gap between the chem‐ical inertness of bulk gold and high catalytic activity of nano gold. The present work helps us to understand the CO oxidation reaction mechanism on gold catalysts and the influence of relativistic effects on gold catalysis.
文摘A new method of calculating finely the soft X ray spectra of hydrogenlike highly ionized states is presented. It is based on the relation of the ionicity and the ionization energies of hydrogenlike atoms and the new model of potential function of hydrogenlike atoms. The relativistic revision and the spin orbit couping of excitation energy levels are taken into account. The calculated results are in good agreement with the experiments.
文摘Low lying excited states of beryllium are calculated with multiconfiguration interaction method. The relativisitic corrections and mass polarization are included. The oscillator strength and radiation rates are also calculated. Our results are in good agreement with other theoretical data.
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.10804001, No.10674002, and No.20773024), the National High Technology Research and Development Program of China (863 Program) (No.2006AA09Z243-3), and the Program for Innovative Research Team in Anhui Normal University of China.
文摘Low-lying electronic states of the lutetium dimer (Lu2) were studied based on density functional theory (DFT) using ten different density functionals together with three different relativistic effective core pseudopotentials (RECPs). Relative state energies, equilibrium bond lengths, vibrational frequencies, and ground-state dissociation energies were evaluated. It was found that the ground state is a triplet state irrespective of the type of functional and RECP used. This result is in contrast with a previous DFT calculation which gave a singlet ground state for Lu2. By comparing with the high-level ab initio and available experimental results, it is evident that the hybrid-GGA functionals combined with the Stuttgart smallcore RECP yield the best overall agreement for the properties under study. The effects of Hartree-Fock exchange in B3LYP functional on the calculated bond length and dissociation energy of the ground state were examined, and rationalized in terms of 5d participation in Lu-Lu covalent bonding.
基金The project partially supported by National Natural Science Foundation of China under Grant No. 10231050/A010109
文摘In 1935 Dirac established the physical wave equations in the de-Sitter spaces but neither energy-momentum operators nor their conservative laws were given. In this article it is proved that in the de-Sitter group there is a subgroup group isomorphic to the Heisenberg group and the generators of this groups are the energy-momentum operators which obey a conservative law.