期刊文献+
共找到359篇文章
< 1 2 18 >
每页显示 20 50 100
《神工》:为乡野天才立像
1
作者 冯骥才 《中国政协》 2013年第3期79-79,共1页
在书中这一幅幅神采奕奕的画像中,使我们鲜明地感受到画家对中华文化的钟爱,对大地与人民的挚爱;它在给我们美和文化的感染的同时,电给我们思想的启迪。
关键词 画集 艺术欣赏 《神工》 非物质文化遗产
原文传递
Prediction of Hot Deformation Behavior of 7Mo Super Austenitic Stainless Steel Based on Back Propagation Neural Network
2
作者 WANG Fan WANG Xitao +1 位作者 XU Shiguang HE Jinshan 《材料导报》 EI CAS CSCD 北大核心 2024年第17期165-171,共7页
The hot compression tests of 7Mo super austenitic stainless(SASS)were conducted to obtain flow curves at the temperature of 1000-1200℃and strain rate of 0.001 s^(-1)to 1 s^(-1).To predict the non-linear hot deformati... The hot compression tests of 7Mo super austenitic stainless(SASS)were conducted to obtain flow curves at the temperature of 1000-1200℃and strain rate of 0.001 s^(-1)to 1 s^(-1).To predict the non-linear hot deformation behaviors of the steel,back propagation-artificial neural network(BP-ANN)with 16×8×8 hidden layer neurons was proposed.The predictability of the ANN model is evaluated according to the distribution of mean absolute error(MAE)and relative error.The relative error of 85%data for the BP-ANN model is among±5%while only 42.5%data predicted by the Arrhenius constitutive equation is in this range.Especially,at high strain rate and low temperature,the MAE of the ANN model is 2.49%,which has decreases for 18.78%,compared with conventional Arrhenius constitutive equation. 展开更多
关键词 7Mo super austenitic stainless steel hot deformation behavior flow stress BP-ANN Arrhenius constitutive equation
下载PDF
The Spirit of Craftsmanship and Industrial Civilization 被引量:18
3
作者 李海舰 徐韧 李然 《China Economist》 2016年第4期68-83,共16页
The spirit of craftsmanship applies to every trade. In the context of opportunities arising from the new industrial revolution and China's transition towards high-end manufacturing, Premier Li Keqiang put forward the... The spirit of craftsmanship applies to every trade. In the context of opportunities arising from the new industrial revolution and China's transition towards high-end manufacturing, Premier Li Keqiang put forward the concept of the spirit of craftsmanship. This paper reckons that the spirit of craftsmanship can be defined from six dimensions including dedication, standard, precision, innovation, perfection and human care. In fact, the spirit of craftsmanship abounds in China, as illustrated by the examples of Tongrentang and Haier. In comparing the three manufacturing powers of Germany, Japan and the United States, this paper reveals the differences in the connotations of the spirit of craftsmanship across these countries. According to specific national conditions and development stage, China must achieve structural re-engineering of corporate organizations at the level of firms, products, divisions and modules. In a nutshell, the spirit of craftsmanship is a core component of corporate and industrial civilization and it holds an important historic position in industrial and social civilization. 展开更多
关键词 spirit of craftsmanship industrial civilization social civilization supply-sidestructural reforms
下载PDF
Constructing processing map of Ti40 alloy using artificial neural network 被引量:4
4
作者 孙宇 曾卫东 +3 位作者 赵永庆 张学敏 马雄 韩远飞 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第1期159-165,共7页
Based on the experimental data of Ti40 alloy obtained from Gleeble-1500 thermal simulator,an artificial neural network model of high temperature flow stress as a function of strain,strain rate and temperature was esta... Based on the experimental data of Ti40 alloy obtained from Gleeble-1500 thermal simulator,an artificial neural network model of high temperature flow stress as a function of strain,strain rate and temperature was established.In the network model,the input parameters of the model are strain,logarithm strain rate and temperature while flow stress is the output parameter.Multilayer perceptron(MLP) architecture with back-propagation algorithm is utilized.The present study achieves a good performance of the artificial neural network(ANN) model,and the predicted results are in agreement with experimental values.A processing map of Ti40 alloy is obtained with the flow stress predicted by the trained neural network model.The processing map developed by ANN model can efficiently track dynamic recrystallization and flow localization regions of Ti40 alloy during deforming.Subsequently,the safe and instable domains of hot working of Ti40 alloy are identified and validated through microstructural investigations. 展开更多
关键词 Ti40 alloy processing map artificial neural network
下载PDF
Hot deformation behavior and processing maps of Mg-Zn-Cu-Zr magnesium alloy 被引量:7
5
作者 余晖 于化顺 +2 位作者 Young-min KIM Bong-sun YOU 闵光辉 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第3期756-764,共9页
The deformation behaviors of a new quaternary Mg-6Zn-1.5Cu-0.5Zr alloy at temperatures of 523-673 K and strain rates of 0.001-1 s-1 were studied by compressive tests using a Gleeble 3800 thermal-simulator.The results ... The deformation behaviors of a new quaternary Mg-6Zn-1.5Cu-0.5Zr alloy at temperatures of 523-673 K and strain rates of 0.001-1 s-1 were studied by compressive tests using a Gleeble 3800 thermal-simulator.The results show that the flow stress increases as the deformation temperature decreases or as the strain rate increases.A strain-dependent constitutive equation and a feed-forward back-propagation artificial neural network were used to predict flow stress,which showed good agreement with experimental data.The processing map suggests that the domains of 643-673 K and 0.001-0.01 s-1 are corresponded to optimum conditions for hot working of the T4-treated Mg-6Zn-1.5Cu-0.5Zr alloy. 展开更多
关键词 Mg alloy Cu addition flow stress deformation behavior constitutive equation artificial neural network processing map
下载PDF
Recovery of indium by acid leaching waste ITO target based on neural network 被引量:5
6
作者 李瑞迪 袁铁锤 +3 位作者 范文博 邱子力 苏文俊 钟楠骞 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第1期257-262,共6页
The optimized leaching techniques were studied by technical experiment and neural network optimization for improving indium leaching rate. Firstly, effect of single technical parameter on leaching rate was investigate... The optimized leaching techniques were studied by technical experiment and neural network optimization for improving indium leaching rate. Firstly, effect of single technical parameter on leaching rate was investigated experimentally with other parameters fixed as constants. The results show that increasing residual acidity can improve leaching rate of indium. Increasing the oxidant content can obviously increase leaching rate but the further addition of oxidant could not improve the leaching rate. The enhancement of temperature can improve the leaching rate while the further enhancement of temperature decreases it. Extension leaching time can improve the leaching rate. On this basis, a BPNN model was established to study the effects of multi-parameters on leaching rate. The results show that the relative error is extremely small, thus the BPNN model has a high prediction precision. At last, optimized technical parameters which can yield high leaching rate of 99.5%were obtained by experimental and BPNN studies:residual acidity 50-60 g/L, oxidant addition content 10%, leaching temperature 70 ℃ and leaching time 2 h. 展开更多
关键词 INDIUM leaching rate ITO waste target BPNN model
下载PDF
Prediction of mechanical properties of A357 alloy using artificial neural network 被引量:7
7
作者 杨夏炜 朱景川 +4 位作者 农智升 何东 来忠红 刘颖 刘法伟 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第3期788-795,共8页
The workpieces of A357 alloy were routinely heat treated to the T6 state in order to gain an adequate mechanical property.The mechanical properties of these workpieces depend mainly on solid-solution temperature,solid... The workpieces of A357 alloy were routinely heat treated to the T6 state in order to gain an adequate mechanical property.The mechanical properties of these workpieces depend mainly on solid-solution temperature,solid-solution time,artificial aging temperature and artificial aging time.An artificial neural network(ANN) model with a back-propagation(BP) algorithm was used to predict mechanical properties of A357 alloy,and the effects of heat treatment processes on mechanical behavior of this alloy were studied.The results show that this BP model is able to predict the mechanical properties with a high accuracy.This model was used to reflect the influence of heat treatments on the mechanical properties of A357 alloy.Isograms of ultimate tensile strength and elongation were drawn in the same picture,which are very helpful to understand the relationship among aging parameters,ultimate tensile strength and elongation. 展开更多
关键词 A357 alloy mechanical properties artificial neural network heat treatment parameters
下载PDF
Improvement and application of neural network models in development of wrought magnesium alloys 被引量:3
8
作者 刘彬 汤爱涛 +3 位作者 潘复生 张静 彭健 王敬丰 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第4期885-891,888-891,共7页
Neural network models of mechanical properties prediction for wrought magnesium alloys were improved by using more reasonable parameters, and were used to develop new types of magnesium alloys. The parameters were con... Neural network models of mechanical properties prediction for wrought magnesium alloys were improved by using more reasonable parameters, and were used to develop new types of magnesium alloys. The parameters were confirmed by comparing prediction errors and correlation coefficients of models, which have been built with all the parameters used commonly with training of all permutations and combinations. The application was focused on Mg-Zn-Mn and Mg-Zn-Y-Zr alloys. The prediction of mechanical properties of Mg-Zn-Mn alloys and the effects of mole ratios of Y to Zn on the strengths in Mg-Zn-Y-Zr alloys were investigated by using the improved models. The predicted results are good agreement with the experimental values. A high strength extruded Mg-Zn-Zr-Y alloy was also developed by the models. The applications of the models indicate that the improved models can be used to develop new types of wrought magnesium alloys. 展开更多
关键词 magnesium alloy artificial neural network MODEL mechanical property
下载PDF
Optimum design of flow distribution in quenching tank for heat treatment of A357 aluminum alloy large complicated thin-wall workpieces by CFD simulation and ANN approach 被引量:5
9
作者 杨夏炜 朱景川 +3 位作者 何东 来忠红 农智升 刘勇 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第5期1442-1451,共10页
Based on the computational fluid dynamics (CFD) method, a quenching tank with two agitator systems and two flow-equilibrating devices was selected to simulate flow distribution using Fluent software. A numerical exa... Based on the computational fluid dynamics (CFD) method, a quenching tank with two agitator systems and two flow-equilibrating devices was selected to simulate flow distribution using Fluent software. A numerical example was used to testify the validity of the quenching tank model. In order to take tank parameters (agitation speed, position of directional flow baffle and coordinate position in quench zone) into account, an approach that combines the artificial neural network (ANN) with CFD method was developed to study the flow distribution in the quenching tank. The flow rate of the quenching medium shows a very good agreement between the ANN predicted results and the Fluent simulated data. Methods for the optimal design of the quenching tank can be used as technical support for industrial production. 展开更多
关键词 A357 aluminum alloy computational fluid dynamics quenching tank flow distribution artificial neural network
下载PDF
Application of novel physical picture based on artificial neural networks to predict microstructure evolution of Al-Zn-Mg-Cu alloy during solid solution process 被引量:6
10
作者 刘蛟蛟 李红英 +1 位作者 李德望 武岳 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第3期944-953,共10页
The effects of the solid solution conditions on the microstructure and tensile properties of Al?Zn?Mg?Cu aluminum alloy were investigated by in-situ resistivity measurement, optical microscopy (OM), scanning electron ... The effects of the solid solution conditions on the microstructure and tensile properties of Al?Zn?Mg?Cu aluminum alloy were investigated by in-situ resistivity measurement, optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and tensile test. A radial basis function artificial neural network (RBF-ANN) model was developed for the analysis and prediction of the electrical resistivity of the tested alloy during the solid solution process. The results show that the model is capable of predicting the electrical resistivity with remarkable success. The correlation coefficient between the predicted results and experimental data is 0.9958 and the relative error is 0.33%. The predicted data were adopted to construct a novel physical picture which was defined as “solution resistivity map”. As revealed by the map, the optimum domain for the solid solution of the tested alloy is in the temperature range of 465?475 °C and solution time range of 50?60 min. In this domain, the solution of second particles and the recrystallization phenomenon will reach equilibrium. 展开更多
关键词 aluminum alloy solution treatment electrical resistivity artificial neural network microstructure evolution
下载PDF
Compositional optimization of glass forming alloys based on critical dimension by using artificial neural network 被引量:2
11
作者 蔡安辉 熊翔 +6 位作者 刘咏 安伟科 周果君 罗云 李铁林 李小松 谭湘夫 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第5期1458-1466,共9页
An artificial neural network (ANN) model was developed for simulating and predicting critical dimension dc of glass forming alloys. A group of Zr-Al-Ni-Cu and Cu-Zr-Ti-Ni bulk metallic glasses were designed based on... An artificial neural network (ANN) model was developed for simulating and predicting critical dimension dc of glass forming alloys. A group of Zr-Al-Ni-Cu and Cu-Zr-Ti-Ni bulk metallic glasses were designed based on the dc and their de values were predicted by the ANN model. Zr-Al-Ni-Cu and Cu-Zr-Ti-Ni bulk metallic glasses were prepared by injecting into copper mold. The amorphous structures and the determination of the dc of as-cast alloys were ascertained using X-ray diffraction. The results show that the predicted de values of glass forming alloys are in agreement with the corresponding experimental values. Thus the developed ANN model is reliable and adequate for designing the composition and predicting the de of glass forming alloy. 展开更多
关键词 critical dimension glass forming alloy artificial neural network metallic glasses
下载PDF
Integrated assessment of sea water quality based on BP artificial neural network 被引量:3
12
作者 李雪 刘长发 +1 位作者 王磊 邱文静 《Marine Science Bulletin》 CAS 2011年第2期62-71,共10页
In order to carry out an integrated assessment of sea water quality objectively, this paper based on the concept and principle of artificial neural network, generated appropriate training samples for BP artificial neu... In order to carry out an integrated assessment of sea water quality objectively, this paper based on the concept and principle of artificial neural network, generated appropriate training samples for BP artificial neural network model through the method of producing samples to the concentration of various pollution index of sea water quality from the viewpoint of threshold, established the BP artificial neural network model of sea water quality assessment using multi-layer neural network with error back-propagation algorithm. This model was used to assess water environment and obtain sea water quality categories of offshore area in Bohai Bay through calculating. The calculations shown that pollution index in river's wet season was higher than that in dry season from 2004 to 2007, and the pollution was particularly serious in 2005 and 2006, but a little better in 2007. The assessed results of cases shown that the model was reasonable in design and higher in generalization, meanwhile, it was common, objective and practical to sea water quality assessment. 展开更多
关键词 artificial neural network sea water quality training sample connection weight ASSESSMENT
下载PDF
Combining the genetic algorithms with artificial neural networks for optimization of board allocating 被引量:2
13
作者 曹军 张怡卓 岳琪 《Journal of Forestry Research》 SCIE CAS CSCD 2003年第1期87-88,共2页
This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in boa... This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in board allocating of furniture production. In the experiment, the rectangular flake board of 3650 mm 1850 mm was used as raw material to allocate 100 sets of Table Bucked. The utilizing rate of the board reached 94.14 % and the calculating time was only 35 s. The experiment result proofed that the method by using the GA for optimizing the weights of the ANN can raise the utilizing rate of the board and can shorten the time of the design. At the same time, this method can simultaneously searched in many directions, thus greatly in-creasing the probability of finding a global optimum. 展开更多
关键词 Artificial neural network Genetic algorithms Back propagation model (BP model) OPTIMIZATION
下载PDF
Fabrication of a Silicon-Based Microprobe for Neural Interface Applications 被引量:3
14
作者 隋晓红 张若昕 +2 位作者 裴为华 鲁琳 陈弘达 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2006年第10期1703-1706,共4页
A two-dimensional (2D) multi-channel silicon-based microelectrode array is developed for recording neural signals. Three photolithographic masks are utilized in the fabrication process. SEM images show that the micr... A two-dimensional (2D) multi-channel silicon-based microelectrode array is developed for recording neural signals. Three photolithographic masks are utilized in the fabrication process. SEM images show that the microprobe is 1.2mm long, 100μm wide,and 30μm thick,with recording sites spaced 200μm apart for good signal isolation. For the individual recording sites, the characteristics of impedance versus frequency are shown by in vitro testing. The impedance declines from 14MΩ to 1.9kΩ as the frequency changes from 0 to 10MHz. A compatible PCB (print circuit board) aids in the less troublesome implantation and stabilization of the microprobe. 展开更多
关键词 microelectrode array neural interface MEMS
下载PDF
PC-based artif icial neural network inversion for airborne time-domain electromagnetic data 被引量:8
15
作者 朱凯光 马铭遥 +4 位作者 车宏伟 杨二伟 嵇艳鞠 于生宝 林君 《Applied Geophysics》 SCIE CSCD 2012年第1期1-8,114,共9页
Traditionally, airborne time-domain electromagnetic (ATEM) data are inverted to derive the earth model by iteration. However, the data are often highly correlated among channels and consequently cause ill-posed and ... Traditionally, airborne time-domain electromagnetic (ATEM) data are inverted to derive the earth model by iteration. However, the data are often highly correlated among channels and consequently cause ill-posed and over-determined problems in the inversion. The correlation complicates the mapping relation between the ATEM data and the earth parameters and thus increases the inversion complexity. To obviate this, we adopt principal component analysis to transform ATEM data into orthogonal principal components (PCs) to reduce the correlations and the data dimensionality and simultaneously suppress the unrelated noise. In this paper, we use an artificial neural network (ANN) to approach the PCs mapping relation with the earth model parameters, avoiding the calculation of Jacobian derivatives. The PC-based ANN algorithm is applied to synthetic data for layered models compared with data-based ANN for airborne time-domain electromagnetic inversion. The results demonstrate the PC-based ANN advantages of simpler network structure, less training steps, and better inversion results over data-based ANN, especially for contaminated data. Furthermore, the PC-based ANN algorithm effectiveness is examined by the inversion of the pseudo 2D model and comparison with data-based ANN and Zhody's methods. The results indicate that PC-based ANN inversion can achieve a better agreement with the true model and also proved that PC-based ANN is feasible to invert large ATEM datasets. 展开更多
关键词 Principal component analysis artificial neural network airborne time-domain electromagnetics INVERSION CONDUCTIVITY
下载PDF
Application of neural network in heating network leakage fault diagnosis 被引量:2
16
作者 雷翠红 邹平华 《Journal of Southeast University(English Edition)》 EI CAS 2010年第2期173-176,共4页
In order to investigate the leak detection strategy of a heating network,a space-based simulation mathematical model for the heating network under leakage conditions is built by graph theory.The pressure changes of al... In order to investigate the leak detection strategy of a heating network,a space-based simulation mathematical model for the heating network under leakage conditions is built by graph theory.The pressure changes of all the nodes in the heating network are obtained from node leak and pipe leak conditions.Then,a leakage diagnosis system based on the back propagation(BP)neural network is established.This diagnosis system can predict the leakage pipe by collecting the pressure change data of the monitoring points,which can preliminary estimate the leak location.The usefulness of this system is proved by an example.The experimental results show that the forecast accuracy by this diagnosis system can reach 100%. 展开更多
关键词 heating network FAULT DIAGNOSIS artificial neural network
下载PDF
Springback prediction for incremental sheet forming based on FEM-PSONN technology 被引量:5
17
作者 韩飞 莫健华 +3 位作者 祁宏伟 龙睿芬 崔晓辉 李中伟 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第4期1061-1071,共11页
In the incremental sheet forming (ISF) process, springback is a very important factor that affects the quality of parts. Predicting and controlling springback accurately is essential for the design of the toolpath f... In the incremental sheet forming (ISF) process, springback is a very important factor that affects the quality of parts. Predicting and controlling springback accurately is essential for the design of the toolpath for ISF. A three-dimensional elasto-plastic finite element model (FEM) was developed to simulate the process and the simulated results were compared with those from the experiment. The springback angle was found to be in accordance with the experimental result, proving the FEM to be effective. A coupled artificial neural networks (ANN) and finite element method technique was developed to simulate and predict springback responses to changes in the processing parameters. A particle swarm optimization (PSO) algorithm was used to optimize the weights and thresholds of the neural network model. The neural network was trained using available FEM simulation data. The results showed that a more accurate prediction of s!oringback can be acquired using the FEM-PSONN model. 展开更多
关键词 incremental sheet forming (ISF) springback prediction finite element method (FEM) artificial neural network (ANN) particle swarm optimization (PSO) algorithm
下载PDF
DEPTH PREDICTION OF RAIN WATER ON ROAD SURFACE BASED ON ARTIFICIAL NEURAL NETWORK 被引量:2
18
作者 季天剑 安景峰 +1 位作者 何申明 李春雷 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2006年第2期115-119,共5页
A model based on the non-linear artificial neural network (ANN) is established to predict the thickness of the water film on road surfaces. The weight and the threshold can be determined by training test data, and t... A model based on the non-linear artificial neural network (ANN) is established to predict the thickness of the water film on road surfaces. The weight and the threshold can be determined by training test data, and the water film thickness on the road surface can be accurately predicted by the empirical verification based on sample data. Results show that the proposed ANN model is feasible to predict the water film thickness of the road surface. 展开更多
关键词 overland flow gradation of asphalt mixture artificial neural network depth of rain water on road surface
下载PDF
Intelligent method to develop constitutive relationship of Ti-6Al-2Zr-1Mo-1V alloy 被引量:1
19
作者 孙宇 曾卫东 +2 位作者 赵永庆 韩远飞 马雄 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第6期1457-1461,共5页
The isothermal compression tests were carried out in the Thermecmastor-Z thermo-simulator at temperatures of 800, 850, 900, 950, 1000 and 1050 ℃ and the strain rates of 0.01, 0.1, 1 and 10 s-1. The influence of defor... The isothermal compression tests were carried out in the Thermecmastor-Z thermo-simulator at temperatures of 800, 850, 900, 950, 1000 and 1050 ℃ and the strain rates of 0.01, 0.1, 1 and 10 s-1. The influence of deformation temperature and strain rate on the flow stress of Ti-6Al-2Zr-IMo-IV alloy was studied. Based on the experimental data sets, the high temperature deformation behavior of Ti-6A1-2Zr-IMo-IV alloy was presented using the intelligent method of artificial neural network (ANN). The results indicate that the predicted flow stress values by ANN model is quite consistent with the experimental results, which implies that the artificial neural network is an effective tool for studying the hot deformation behavior of the present alloy. In addition, the development of graphical user interface is implemented using Visual Basic programming language. 展开更多
关键词 Ti-6A1-2Zr-1Mo-IV alloy artificial neural network constitutive relationship deformation behavior
下载PDF
NEW PRINCIPLE FOR DIRECTIONAL COMPARISON CARRIER PROTECTION OF EHV TRANSMISSION LINES 被引量:1
20
作者 王钢 李遥 +2 位作者 余晓丹 刘众仆 贺家李 《Transactions of Tianjin University》 EI CAS 1998年第2期6-10,共5页
The increasing scale and complexity of power systems require high performance and high reliability of power system protection.Protective relaying based on directional comparison with power line carrier or microwave ch... The increasing scale and complexity of power systems require high performance and high reliability of power system protection.Protective relaying based on directional comparison with power line carrier or microwave channels is the most suitable protection scheme for long distance EHV transmission lines and is widely used in power systems.The key element of such protection is a directional relay used to discriminate the fault direction.In order to overcome the disadvantages of conventional directional relays,the authors of this paper put forward the directional comparison carrier protection based on the artificial neural network(ANN).The protection is extensively tested using electromagnetic transient program (EMTP) under various electric power system operating and fault conditions.It is proved that the directional comparison carrier protection based on ANN,which can recognize various fault patterns of the protected transmission line(such as fault direction,fault phases etc.)correctly in any kind of operating and fault conditions and the whole process,is satisfactory for EHV transmission line protection. 展开更多
关键词 artificial neural network EHV transmission line directional comparison carrier protection
下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部