Objective To examine the important roles of microRNAs (miRNAs) in regulating amphid structure and function, we performed a computational analysis for the genetic loci required for the sensory perception and their po...Objective To examine the important roles of microRNAs (miRNAs) in regulating amphid structure and function, we performed a computational analysis for the genetic loci required for the sensory perception and their possibly corresponding miRNAs in C. elegans. Methods Total 55 genetic loci required for the amphid structure and function were selected. Sequence alignment was combined with E value evaluation to investigate and identify the possible corresponding miRNAs. Results Total 30 genes among the 55 genetic loci selected have their possible corresponding regulatory miRNA(s), and identified genes participate in the regulation of almost all aspects of amphid structure and function. In addition, our data suggest that both the amphid structure and the amphid functions might be regulated by a series of network signaling pathways. Moreover, the distribution of miRNAs along the 3' untranslated region (UTR) of these 30 genes exhibits different patterns. Conclusion We present the possible miRNA-mediated signaling pathways involved in the regulation of chemosensation and thermosensation by controlling the corresponding sensory neuron and interneuron functions. Our work will be useful for better understanding of the miRNA-mediated control of the chemotaxis and thermotaxis in C. elegans.展开更多
Objective: to obtain the high purified and active nerve growth factor (NGF) from mouse submaxillary glands. Methods: NGF was prepared from mouse submaxillary glands by the way of elution with CM 52 column. The molecul...Objective: to obtain the high purified and active nerve growth factor (NGF) from mouse submaxillary glands. Methods: NGF was prepared from mouse submaxillary glands by the way of elution with CM 52 column. The molecular weight and purification of NGF were detected by SDS-PAGE polyacrylamide gel electrophoresis. The biological activity of NGF was verified thorough culturing DRG. Results: About 14 kDa stained band was observed on SDS-PAGE and it promoted proliferation of dorsal root gang lia (DRG). Conclusion: Good quality of NGF could be obtained with these methods.展开更多
Based on potted plant experiment, BP-artifieial neural network was used to simulate crop evapotranspiration and 3 kinds of artificial neural network models were constructed as ET1 (meteorological factors), ET2( met...Based on potted plant experiment, BP-artifieial neural network was used to simulate crop evapotranspiration and 3 kinds of artificial neural network models were constructed as ET1 (meteorological factors), ET2( meteorological factors and sowing days) and ET3 (meteorological factors, sowing days and water content). And the predicted result was compared with actual value ET that was obtained by weighing method. The results showed that the ET3 model had higher calculation precision and an optimum BP-artificial neural network model for calculating crop evapotranspiration.展开更多
AIM: To investigate that both the neuronal function of the contractile system and structural apparatus of the gastrointestinal tract are affected in patients with longstanding diabetes and auto mic neuropathy. METHODS...AIM: To investigate that both the neuronal function of the contractile system and structural apparatus of the gastrointestinal tract are affected in patients with longstanding diabetes and auto mic neuropathy. METHODS: The evoked esophageal and duodenal contractile activity to standardized bag distension was assessed using a specialized ultrasound-based probe. Twelve type-1 diabetic patients with autonomic neuropathy and severe gastrointestinal symptoms and 12 healthy controls were studied. The geometry and biomechanical parameters (strain, tension/stress, and stiffness) were assessed. RESULTS: The diabetic patients had increased frequency of distension-induced contractions (6.0 ± 0.6 vs 3.3 ± 0.5, P < 0.001). This increased reactivity was correlated with the duration of the disease (P = 0.009). Impaired coordination of the contractile activity in diabetic patients was demonstrated as imbalance between the time required to evoke the first contraction at the distension site and proximal to it (1.5 ± 0.6 vs 0.5 ± 0.1, P = 0.03). The esophageal wall and especially the mucosa-submucosa layer had increased thickness in the patients (P < 0.001), and the longitudinal and radial compressive stretch was less in diabetics (P <0.001). The esophageal and duodenal wall stiffness and circumferential deformation induced by the distensions were not affected in the patients (all P > 0.14). CONCLUSION: The impaired contractile activity with an imbalance in the distension-induced contractions likely reflects neuronal abnormalities due to autonomic neuropathy. However, structural changes and remodeling of the gastrointestinal tract are also evident and may add to the neuronal changes. This may contribute to the pathophysiology of diabetic gut dysfunction and impact on future management of diabetic patients with gastrointestinal symptoms.展开更多
A remote control system has been developed to deliver stimuli into the rat brain through a wireless micro-stimulator for animal behavior training. The system consists of the following main components: an integrated P...A remote control system has been developed to deliver stimuli into the rat brain through a wireless micro-stimulator for animal behavior training. The system consists of the following main components: an integrated PC control program, a transmitter and a receiver based on Bluetooth (BT) modules, a stimulator controlled by C8051 microprocessor, as well as an operant chamber and an eight-arm radial maze. The micro-stimulator is featured with its changeable amplitude of pulse output for both constant-voltage and constant-current mode, which provides an easy way to set the proper suitable stimulation intensity for different training. The system has been used in behavior experiments for monitoring and recording bar-pressing in the operant chamber, controlling rat roaming in the eight-arm maze, as well as navigating rats through a 3D obstacle route. The results indicated that the system worked stably and that the stimulation was effective for different types of rat behavior controls. In addition, the results showed that stimulation in the whisker barrel region of rat primary somatosensory cortex (SI) acted like a cue. The animals can be trained to take different desired turns upon the association between the SI cue stimulation and the reward stimulation in the medial forehrain bundle (MFB).展开更多
One of biggest recent achievements of neurobiology is the study on neurotrophic factors. The neurotrophins are exciting examples of these factors. They belong to a family of proteins consisting of nerve growth fac-tor...One of biggest recent achievements of neurobiology is the study on neurotrophic factors. The neurotrophins are exciting examples of these factors. They belong to a family of proteins consisting of nerve growth fac-tor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), NT-4/5, NT-6, and NT-7. Today, NGF and BDNF are well recognized to mediate a diz-zying number of trophobiological effects, ranging from neurotrophic through immunotrophic and epitheliotro-phic to metabotrophic effects. These are implicated in the pathogenesis of various diseases. In the same vein, recent studies in adipobiology reveal that this tissue is the body’s largest endocrine and paracrine organ producing multiple signaling proteins collectively termed adipokines, with NGF and BDNF being also produced from adipose tissue. Altogether, neurobio-logy and adipobiology contribute to the improvement of our knowledge on diseases beyond obesity such as cardiometabolic (atherosclerosis, type 2 diabetes, and metabolic syndrome) and neuropsychiatric (e.g. , Alzheimer’s disease and depression) diseases. The present review updates evidence for (1) neurotrophic and metabotrophic potentials of NGF and BDNF linking the pathogenesis of these diseases, and (2) NGF- and BDNF-mediated effects in ampakines, NMDA receptor antagonists, antidepressants, selective deacetylase inhibitors, statins, peroxisome proliferator-activated receptor gamma agonists, and purinergic P2X3 recep-tor up-regulation. This may help to construct a novel paradigm in the feld of translational pharmacology of neuro-metabotrophins, particularly NGF and BDNF.展开更多
Frequency following response(FFR)and auditory brain stem evoked potential response(ABR)were used to determine the auditory acuity in evaluating the effect of electro-acupuncture treatment of kanamycin-induced auditory...Frequency following response(FFR)and auditory brain stem evoked potential response(ABR)were used to determine the auditory acuity in evaluating the effect of electro-acupuncture treatment of kanamycin-induced auditory impairment in guinea pigs.Thesuccinate dehydrogenase(SDH)activity and morphological changes of the inner earreceptors were examined under the light and scanning electron microscope in cochlearspread preparations.The results showed that 1)electro-acupuncture was effective but nosignificant differences were found among the stimulating wave forms;2)Tinggong(SI19),Yifeng(SJ 17),Shenshu(UB 23),Sanyinjiao(Sp 6),Zhubin(K 9)and Waiguan(SJ 5)are all effective acupoints,especially the combination of Tinggong(SI 19),Sanyinjiao(Sp6)and Zhubin(K 9)acupoints;3)improvement in the cochlear function and excitabilityof the cortical and lower auditory center and increase of the mitochondrial SDH activityand energy supply in hair cells might contribute to the mechanism of the treatment.展开更多
Stem cell therapy holds great promises in medical treatment by, e.g., replacing lost cells, re-constitute healthy cell populations and also in the use of stem cells as vehicles for factor and gene delivery. Embryonic ...Stem cell therapy holds great promises in medical treatment by, e.g., replacing lost cells, re-constitute healthy cell populations and also in the use of stem cells as vehicles for factor and gene delivery. Embryonic stem cells have rightfully attracted a large interest due to their proven capacity of differentiating into any cell type in the embryo in vivo. Tissue-specific stem ceils are however already in use in medical practice, and recently the first systematic medical trials involving human neural stem cell (NSC) therapy have been launched. There are yet many obstacles to overcome and procedures to improve. To ensure progress in the medical use of stem cells increased basic knowledge of the molecular mechanisms that govern stem cell characteristics is necessary. Here we provide a review of the literature on NSCs in various aspects of cell therapy, with the main focus on the potential of using biomaterials to control NSC characteristics, differentiation, and delivery. We summarize results from studies on the characteristics of endogenous and transplanted NSCs in rodent models of neurological and cancer diseases, and highlight recent advancements in polymer compatibility and applicability in regulating NSC state and fate. We suggest that the development of specially designed polymers, such as hydrogels, is a crucial issue to improve the outcome of stem cell therapy in the central nervous system.展开更多
The literature shows that improvements in cognitive performance may be observed following an acute bout of exercise. However, evidence in support of the biological mechanisms of this effect is still limited. Findings ...The literature shows that improvements in cognitive performance may be observed following an acute bout of exercise. However, evidence in support of the biological mechanisms of this effect is still limited. Findings from both rodent and human studies suggest brain-derived neu- rotrophic factor (BDNF) as a potential mechanism of the effect of acute exercise on memory. The molecular properties of BDNF allow this protein to be assessed in the periphery (pBDNF) (i.e., blood serum, blood plasma), making measurements of acute exercise-induced changes in BDNF concentration relatively accessible. Studies exploring the acute exercise--pBDNF--cognitive performance relationship have had mixed findings, but this may be more reflective of methodological differences between studies than it is a statement about the role of BDNE For example, significant associations have been observed between acute exercise-induced changes in pBDNF concentration and cognitive performance in studies assessing memory, and non-significant associations have been found in studies assessing non-memory cognitive domains. Three suggestions are made for future research aimed at understanding the role of BDNF as a biological mechanism of this relationship: 1) Assessments of cognitive performance may benefit from a focus on various types of memory (e.g., relational, spatial, long-term); 2) More finegrained measurements of pBDNF will allow for the assessment of concentrations of specific isoforms of the BDNF protein (i.e., immature, mature); 3) Statistical techniques designed to test the mediating role of pBDNF in the acute exercise-cognitive performance relationship should be utilized in order to make causal inferences.展开更多
Peripheral nerves are particularly vulnerable to injuries and are involved in numerous pathologies for which specific treatments are lacking. This review summarizes the pathophysiological features of the most common t...Peripheral nerves are particularly vulnerable to injuries and are involved in numerous pathologies for which specific treatments are lacking. This review summarizes the pathophysiological features of the most common traumatic nerve injury in humans and the different animal models used in nerve regeneration studies. ~Ihe current knowledge concerning Wallerian degeneration and nerve regrowth is then described. Finally, the involvement of intraneural vascularization in these processes is addressed. As intraneural vascularization has been poorly studied, histological experiments were carried out from rat sciatic nerves damaged by a glycerol injection. The results, taken together with the data from literature, suggest that revascularization plays an important role in peripheral nerve regeneration and must therefore be studied more carefully.展开更多
One of the main challenges in consciousness research is widely known as the hard problem of consciousness. In order to tackle this problem, I utilize an approach from theoretical physics, called stochastic electrodyna...One of the main challenges in consciousness research is widely known as the hard problem of consciousness. In order to tackle this problem, I utilize an approach from theoretical physics, called stochastic electrodynamics (SED) which goes one step beyond quantum theory and sheds new light on the reality behind matter. According to this approach, matter is a resonant oscillator that is orchestrated by an all-pervasive stochastic radiation field, called zero-point field (ZPF). The properties of matter are not intrinsic but acquired by dynamic interaction with the ZPF, which in turn picks up information about the material system as soon as an ordered state, i.e., a stable attractor, is reached. I point out that these principles apply also to macroscopic biological systems. From this perspective, long-range correlations in the brain, such as neural gamma synchrony, can be interpreted in terms of order phenomena induced and stabilized by the ZPF, suggesting that every attractor in the brain goes along with an information state in the ZPF. In order to build the bridge to consciousness, I employ additional input from Eastern philosophy. From a comparison between SED and Eastern philosophy I draw the conclusion that the ZPF is an appropriate candidate for the substrate of consciousness, implying that information states in the ZPF are associated with conscious states. On this basis I develop a conceptual framework for consciousness that is fully consistent with physics, neurophysiology, and Eastern philosophy. I argue that this conceptual framework has many interesting features and opens a door to a theory of consciousness. Particularly, it solves the problem of how matter and consciousness communicate in a causally closed functional chain, it gives a physical grounding to existing approaches regarding the connection between consciousness and information, and it gives clear direction to future models and experiments.展开更多
This review examines the organizational principles underlying olfactory learning in three specialized contexts that occur during sensitive periods of enhanced neural plasticity and emphasizes some of their common feat...This review examines the organizational principles underlying olfactory learning in three specialized contexts that occur during sensitive periods of enhanced neural plasticity and emphasizes some of their common features. All three forms of olfactory learning are associated with neural changes in the olfactory bulb (OB) at the first stage of sensory processing. These changes require the association of the olfactory and somatosensory signals in the OB. They all depend on somatosensory stimulation-induced release of noradrenaline that induces structural and functional changes at mitral-granule cell reciprocal synapses in the OB, resulting in increases in inhibitory transmission. In the accessory olfactory bulb, this represents the enhanced self-inhibition of mitral cells, which selectively disrupts the transmission of the mating male's pregnancy-blocking signal at this level. In contrast, an extensive network of secondary dendrites of mitral cells in the main olfactory bulb probably results in a sharpening of the odor-induced pattern of activity, due to increases in lateral inhibition, leading to offspring recognition in sheep and neonatal learning in rats and rabbits. These findings show that inhibitory intemeurons play a critical role in olfactory learning. Further work on how these neurons shape olfactory circuit function could provide important clues to understand memory functions of interneurons in other systems. Moreover, recent research has suggested that three forms of olfactory learning are controlled by synergistic, redundant, and distributed neural mechanisms. This has general implications regarding the mechanisms that may contribute to the robustness of memories [Current Zoology 56 (6): 819-833, 2010].展开更多
In this work, datasets of water and carbon fluxes measured with eddy covariance technique above a summer maize field in the North China Plain were simulated with artificial neural networks (ANNs) to explore the fluxes...In this work, datasets of water and carbon fluxes measured with eddy covariance technique above a summer maize field in the North China Plain were simulated with artificial neural networks (ANNs) to explore the fluxes responses to local environmental variables. The results showed that photosynthetically active radiation (PAR), vapor pressure deficit (VPD), air temperature (T) and leaf area index (LAI) were primary factors regulating both water vapor and carbon dioxide fluxes. Three-layer back-propagation neural networks (BP) could be applied to model fluxes exchange between cropland surface and atmosphere without using detailed physiological information or specific parameters of the plant.展开更多
To collect neuronal activity data from awake, freely behaving animals, we developed miniature telemetry recording system. The integrated system consists of four major components: l) Microelectrodes and micro-driver ...To collect neuronal activity data from awake, freely behaving animals, we developed miniature telemetry recording system. The integrated system consists of four major components: l) Microelectrodes and micro-driver assembly, 2) analog front end (AFE), 3) programmable system on chip (PSoC), and 4) ra- dio transceiver and the LabVIEW were used as a platform for the graphic user interface. The result showed the system was able to record and analyze neuronal recordings in freely moving animals and lasted continuously for a time period of a week or more. This is very useful for the study of the interdisciplinary research of neu- roscience and information engineering techniques. The circuits and architecture of the devices can be adapted for neurobiology and research with other small animals.展开更多
Childbirth is a stressful event for a majority of women and can have many consequences one of which is female sexual dysfunction. The main aim of pre- and postnatal health services is to fulfl physical and emo-tional ...Childbirth is a stressful event for a majority of women and can have many consequences one of which is female sexual dysfunction. The main aim of pre- and postnatal health services is to fulfl physical and emo-tional needs of mothers and babies but not sexual function of women. Also, the fact that sexual satisfaction is part of general well being and mental health is generally neglected. Sexual function of women not only is affected by childbirth, but also is infuenced by many other factors. One of these factors is culture and religion. Women’s sexual life after childbirth has different meaning in different cultures. In many conservative so-cieties with certain cultural and religious beliefs women are prohibited from having sex after childbirth. In these societies, women hear conflicting stories about risks and benefts of having sexual intercourse during post-partum period the majority of which may not be true. It has been reported that some women may be at greater risk of postpartum sexual dysfunction as neurobiologi-cal factors and genetics have been recently suggested to impact female sexual functioning. Considering the multidimensional nature of female sexual dysfunction, this problem cannot be resolved by a simple solution and not all postpartum women can be treated by the same protocol. Various treatment options, such as the use of medications, behavioural interventions and psy-chotherapy have been investigated in research studies and there is still controversy over the issue. Regarding the fact that sexually satisfed women are more men-tally healthy, routine screening during prenatal, ante-natal and postnatal visits are suggested to uncover hid-den diffculties with sexual functioning of women and improve their quality of life.展开更多
文摘Objective To examine the important roles of microRNAs (miRNAs) in regulating amphid structure and function, we performed a computational analysis for the genetic loci required for the sensory perception and their possibly corresponding miRNAs in C. elegans. Methods Total 55 genetic loci required for the amphid structure and function were selected. Sequence alignment was combined with E value evaluation to investigate and identify the possible corresponding miRNAs. Results Total 30 genes among the 55 genetic loci selected have their possible corresponding regulatory miRNA(s), and identified genes participate in the regulation of almost all aspects of amphid structure and function. In addition, our data suggest that both the amphid structure and the amphid functions might be regulated by a series of network signaling pathways. Moreover, the distribution of miRNAs along the 3' untranslated region (UTR) of these 30 genes exhibits different patterns. Conclusion We present the possible miRNA-mediated signaling pathways involved in the regulation of chemosensation and thermosensation by controlling the corresponding sensory neuron and interneuron functions. Our work will be useful for better understanding of the miRNA-mediated control of the chemotaxis and thermotaxis in C. elegans.
文摘Objective: to obtain the high purified and active nerve growth factor (NGF) from mouse submaxillary glands. Methods: NGF was prepared from mouse submaxillary glands by the way of elution with CM 52 column. The molecular weight and purification of NGF were detected by SDS-PAGE polyacrylamide gel electrophoresis. The biological activity of NGF was verified thorough culturing DRG. Results: About 14 kDa stained band was observed on SDS-PAGE and it promoted proliferation of dorsal root gang lia (DRG). Conclusion: Good quality of NGF could be obtained with these methods.
基金Supported by the National Natural Science Foundation of China(50609022)~~
文摘Based on potted plant experiment, BP-artifieial neural network was used to simulate crop evapotranspiration and 3 kinds of artificial neural network models were constructed as ET1 (meteorological factors), ET2( meteorological factors and sowing days) and ET3 (meteorological factors, sowing days and water content). And the predicted result was compared with actual value ET that was obtained by weighing method. The results showed that the ET3 model had higher calculation precision and an optimum BP-artificial neural network model for calculating crop evapotranspiration.
文摘AIM: To investigate that both the neuronal function of the contractile system and structural apparatus of the gastrointestinal tract are affected in patients with longstanding diabetes and auto mic neuropathy. METHODS: The evoked esophageal and duodenal contractile activity to standardized bag distension was assessed using a specialized ultrasound-based probe. Twelve type-1 diabetic patients with autonomic neuropathy and severe gastrointestinal symptoms and 12 healthy controls were studied. The geometry and biomechanical parameters (strain, tension/stress, and stiffness) were assessed. RESULTS: The diabetic patients had increased frequency of distension-induced contractions (6.0 ± 0.6 vs 3.3 ± 0.5, P < 0.001). This increased reactivity was correlated with the duration of the disease (P = 0.009). Impaired coordination of the contractile activity in diabetic patients was demonstrated as imbalance between the time required to evoke the first contraction at the distension site and proximal to it (1.5 ± 0.6 vs 0.5 ± 0.1, P = 0.03). The esophageal wall and especially the mucosa-submucosa layer had increased thickness in the patients (P < 0.001), and the longitudinal and radial compressive stretch was less in diabetics (P <0.001). The esophageal and duodenal wall stiffness and circumferential deformation induced by the distensions were not affected in the patients (all P > 0.14). CONCLUSION: The impaired contractile activity with an imbalance in the distension-induced contractions likely reflects neuronal abnormalities due to autonomic neuropathy. However, structural changes and remodeling of the gastrointestinal tract are also evident and may add to the neuronal changes. This may contribute to the pathophysiology of diabetic gut dysfunction and impact on future management of diabetic patients with gastrointestinal symptoms.
基金Project supported by the Zhejiang University Grant for Multiple Discipline Associated Research, Zhejiang University, China
文摘A remote control system has been developed to deliver stimuli into the rat brain through a wireless micro-stimulator for animal behavior training. The system consists of the following main components: an integrated PC control program, a transmitter and a receiver based on Bluetooth (BT) modules, a stimulator controlled by C8051 microprocessor, as well as an operant chamber and an eight-arm radial maze. The micro-stimulator is featured with its changeable amplitude of pulse output for both constant-voltage and constant-current mode, which provides an easy way to set the proper suitable stimulation intensity for different training. The system has been used in behavior experiments for monitoring and recording bar-pressing in the operant chamber, controlling rat roaming in the eight-arm maze, as well as navigating rats through a 3D obstacle route. The results indicated that the system worked stably and that the stimulation was effective for different types of rat behavior controls. In addition, the results showed that stimulation in the whisker barrel region of rat primary somatosensory cortex (SI) acted like a cue. The animals can be trained to take different desired turns upon the association between the SI cue stimulation and the reward stimulation in the medial forehrain bundle (MFB).
文摘One of biggest recent achievements of neurobiology is the study on neurotrophic factors. The neurotrophins are exciting examples of these factors. They belong to a family of proteins consisting of nerve growth fac-tor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), NT-4/5, NT-6, and NT-7. Today, NGF and BDNF are well recognized to mediate a diz-zying number of trophobiological effects, ranging from neurotrophic through immunotrophic and epitheliotro-phic to metabotrophic effects. These are implicated in the pathogenesis of various diseases. In the same vein, recent studies in adipobiology reveal that this tissue is the body’s largest endocrine and paracrine organ producing multiple signaling proteins collectively termed adipokines, with NGF and BDNF being also produced from adipose tissue. Altogether, neurobio-logy and adipobiology contribute to the improvement of our knowledge on diseases beyond obesity such as cardiometabolic (atherosclerosis, type 2 diabetes, and metabolic syndrome) and neuropsychiatric (e.g. , Alzheimer’s disease and depression) diseases. The present review updates evidence for (1) neurotrophic and metabotrophic potentials of NGF and BDNF linking the pathogenesis of these diseases, and (2) NGF- and BDNF-mediated effects in ampakines, NMDA receptor antagonists, antidepressants, selective deacetylase inhibitors, statins, peroxisome proliferator-activated receptor gamma agonists, and purinergic P2X3 recep-tor up-regulation. This may help to construct a novel paradigm in the feld of translational pharmacology of neuro-metabotrophins, particularly NGF and BDNF.
文摘Frequency following response(FFR)and auditory brain stem evoked potential response(ABR)were used to determine the auditory acuity in evaluating the effect of electro-acupuncture treatment of kanamycin-induced auditory impairment in guinea pigs.Thesuccinate dehydrogenase(SDH)activity and morphological changes of the inner earreceptors were examined under the light and scanning electron microscope in cochlearspread preparations.The results showed that 1)electro-acupuncture was effective but nosignificant differences were found among the stimulating wave forms;2)Tinggong(SI19),Yifeng(SJ 17),Shenshu(UB 23),Sanyinjiao(Sp 6),Zhubin(K 9)and Waiguan(SJ 5)are all effective acupoints,especially the combination of Tinggong(SI 19),Sanyinjiao(Sp6)and Zhubin(K 9)acupoints;3)improvement in the cochlear function and excitabilityof the cortical and lower auditory center and increase of the mitochondrial SDH activityand energy supply in hair cells might contribute to the mechanism of the treatment.
文摘Stem cell therapy holds great promises in medical treatment by, e.g., replacing lost cells, re-constitute healthy cell populations and also in the use of stem cells as vehicles for factor and gene delivery. Embryonic stem cells have rightfully attracted a large interest due to their proven capacity of differentiating into any cell type in the embryo in vivo. Tissue-specific stem ceils are however already in use in medical practice, and recently the first systematic medical trials involving human neural stem cell (NSC) therapy have been launched. There are yet many obstacles to overcome and procedures to improve. To ensure progress in the medical use of stem cells increased basic knowledge of the molecular mechanisms that govern stem cell characteristics is necessary. Here we provide a review of the literature on NSCs in various aspects of cell therapy, with the main focus on the potential of using biomaterials to control NSC characteristics, differentiation, and delivery. We summarize results from studies on the characteristics of endogenous and transplanted NSCs in rodent models of neurological and cancer diseases, and highlight recent advancements in polymer compatibility and applicability in regulating NSC state and fate. We suggest that the development of specially designed polymers, such as hydrogels, is a crucial issue to improve the outcome of stem cell therapy in the central nervous system.
文摘The literature shows that improvements in cognitive performance may be observed following an acute bout of exercise. However, evidence in support of the biological mechanisms of this effect is still limited. Findings from both rodent and human studies suggest brain-derived neu- rotrophic factor (BDNF) as a potential mechanism of the effect of acute exercise on memory. The molecular properties of BDNF allow this protein to be assessed in the periphery (pBDNF) (i.e., blood serum, blood plasma), making measurements of acute exercise-induced changes in BDNF concentration relatively accessible. Studies exploring the acute exercise--pBDNF--cognitive performance relationship have had mixed findings, but this may be more reflective of methodological differences between studies than it is a statement about the role of BDNE For example, significant associations have been observed between acute exercise-induced changes in pBDNF concentration and cognitive performance in studies assessing memory, and non-significant associations have been found in studies assessing non-memory cognitive domains. Three suggestions are made for future research aimed at understanding the role of BDNF as a biological mechanism of this relationship: 1) Assessments of cognitive performance may benefit from a focus on various types of memory (e.g., relational, spatial, long-term); 2) More finegrained measurements of pBDNF will allow for the assessment of concentrations of specific isoforms of the BDNF protein (i.e., immature, mature); 3) Statistical techniques designed to test the mediating role of pBDNF in the acute exercise-cognitive performance relationship should be utilized in order to make causal inferences.
基金supported by a doctoral fellowship from the ‘Conseil Régional du Limousin’ to MC
文摘Peripheral nerves are particularly vulnerable to injuries and are involved in numerous pathologies for which specific treatments are lacking. This review summarizes the pathophysiological features of the most common traumatic nerve injury in humans and the different animal models used in nerve regeneration studies. ~Ihe current knowledge concerning Wallerian degeneration and nerve regrowth is then described. Finally, the involvement of intraneural vascularization in these processes is addressed. As intraneural vascularization has been poorly studied, histological experiments were carried out from rat sciatic nerves damaged by a glycerol injection. The results, taken together with the data from literature, suggest that revascularization plays an important role in peripheral nerve regeneration and must therefore be studied more carefully.
文摘One of the main challenges in consciousness research is widely known as the hard problem of consciousness. In order to tackle this problem, I utilize an approach from theoretical physics, called stochastic electrodynamics (SED) which goes one step beyond quantum theory and sheds new light on the reality behind matter. According to this approach, matter is a resonant oscillator that is orchestrated by an all-pervasive stochastic radiation field, called zero-point field (ZPF). The properties of matter are not intrinsic but acquired by dynamic interaction with the ZPF, which in turn picks up information about the material system as soon as an ordered state, i.e., a stable attractor, is reached. I point out that these principles apply also to macroscopic biological systems. From this perspective, long-range correlations in the brain, such as neural gamma synchrony, can be interpreted in terms of order phenomena induced and stabilized by the ZPF, suggesting that every attractor in the brain goes along with an information state in the ZPF. In order to build the bridge to consciousness, I employ additional input from Eastern philosophy. From a comparison between SED and Eastern philosophy I draw the conclusion that the ZPF is an appropriate candidate for the substrate of consciousness, implying that information states in the ZPF are associated with conscious states. On this basis I develop a conceptual framework for consciousness that is fully consistent with physics, neurophysiology, and Eastern philosophy. I argue that this conceptual framework has many interesting features and opens a door to a theory of consciousness. Particularly, it solves the problem of how matter and consciousness communicate in a causally closed functional chain, it gives a physical grounding to existing approaches regarding the connection between consciousness and information, and it gives clear direction to future models and experiments.
基金supported in part by research grants from the Ministry of Education,Culture,Sports,Science and Technology of Japan and Kochi University
文摘This review examines the organizational principles underlying olfactory learning in three specialized contexts that occur during sensitive periods of enhanced neural plasticity and emphasizes some of their common features. All three forms of olfactory learning are associated with neural changes in the olfactory bulb (OB) at the first stage of sensory processing. These changes require the association of the olfactory and somatosensory signals in the OB. They all depend on somatosensory stimulation-induced release of noradrenaline that induces structural and functional changes at mitral-granule cell reciprocal synapses in the OB, resulting in increases in inhibitory transmission. In the accessory olfactory bulb, this represents the enhanced self-inhibition of mitral cells, which selectively disrupts the transmission of the mating male's pregnancy-blocking signal at this level. In contrast, an extensive network of secondary dendrites of mitral cells in the main olfactory bulb probably results in a sharpening of the odor-induced pattern of activity, due to increases in lateral inhibition, leading to offspring recognition in sheep and neonatal learning in rats and rabbits. These findings show that inhibitory intemeurons play a critical role in olfactory learning. Further work on how these neurons shape olfactory circuit function could provide important clues to understand memory functions of interneurons in other systems. Moreover, recent research has suggested that three forms of olfactory learning are controlled by synergistic, redundant, and distributed neural mechanisms. This has general implications regarding the mechanisms that may contribute to the robustness of memories [Current Zoology 56 (6): 819-833, 2010].
基金Project (No. 40328001) supported by the National Science Fund forOutstanding Youth Overseas China
文摘In this work, datasets of water and carbon fluxes measured with eddy covariance technique above a summer maize field in the North China Plain were simulated with artificial neural networks (ANNs) to explore the fluxes responses to local environmental variables. The results showed that photosynthetically active radiation (PAR), vapor pressure deficit (VPD), air temperature (T) and leaf area index (LAI) were primary factors regulating both water vapor and carbon dioxide fluxes. Three-layer back-propagation neural networks (BP) could be applied to model fluxes exchange between cropland surface and atmosphere without using detailed physiological information or specific parameters of the plant.
基金supported by the Shandong Province Nature Science Foundation(Grant No.ZR2010CM055)Science Development Plan Project(Grant No.2010GGX10133)
文摘To collect neuronal activity data from awake, freely behaving animals, we developed miniature telemetry recording system. The integrated system consists of four major components: l) Microelectrodes and micro-driver assembly, 2) analog front end (AFE), 3) programmable system on chip (PSoC), and 4) ra- dio transceiver and the LabVIEW were used as a platform for the graphic user interface. The result showed the system was able to record and analyze neuronal recordings in freely moving animals and lasted continuously for a time period of a week or more. This is very useful for the study of the interdisciplinary research of neu- roscience and information engineering techniques. The circuits and architecture of the devices can be adapted for neurobiology and research with other small animals.
文摘Childbirth is a stressful event for a majority of women and can have many consequences one of which is female sexual dysfunction. The main aim of pre- and postnatal health services is to fulfl physical and emo-tional needs of mothers and babies but not sexual function of women. Also, the fact that sexual satisfaction is part of general well being and mental health is generally neglected. Sexual function of women not only is affected by childbirth, but also is infuenced by many other factors. One of these factors is culture and religion. Women’s sexual life after childbirth has different meaning in different cultures. In many conservative so-cieties with certain cultural and religious beliefs women are prohibited from having sex after childbirth. In these societies, women hear conflicting stories about risks and benefts of having sexual intercourse during post-partum period the majority of which may not be true. It has been reported that some women may be at greater risk of postpartum sexual dysfunction as neurobiologi-cal factors and genetics have been recently suggested to impact female sexual functioning. Considering the multidimensional nature of female sexual dysfunction, this problem cannot be resolved by a simple solution and not all postpartum women can be treated by the same protocol. Various treatment options, such as the use of medications, behavioural interventions and psy-chotherapy have been investigated in research studies and there is still controversy over the issue. Regarding the fact that sexually satisfed women are more men-tally healthy, routine screening during prenatal, ante-natal and postnatal visits are suggested to uncover hid-den diffculties with sexual functioning of women and improve their quality of life.