The composite films of GaSb nanoparticles embedded in SiO2 matrices were fabricated by radio-frequency magnetron co-sputtering. Transmission electron microscope and X-ray diffraction pattern indicate that the GaSb nan...The composite films of GaSb nanoparticles embedded in SiO2 matrices were fabricated by radio-frequency magnetron co-sputtering. Transmission electron microscope and X-ray diffraction pattern indicate that the GaSb nanoparticles were uniformly dispersed in SiO2 matrices. Room temperature transmission spectra exhibit a blue shift of about 2.73 eV. The blue shift increases with decreasing size of GaSb nanoparticles, suggesting the existence of quantum size effects. Room temperature Raman spectra show that there is a larger Raman peak red shift and broadening of the composite films than that of bulk GaSb. This phenomenon is explained by photon confinement effect and tensile stress effect.展开更多
基金the Chinese Climbing Program. We would like to thank Profs. Xu Cunyi and Zuo Jian for Raman measurements at the Center of Structure and Element Analysis (USTC) .
文摘The composite films of GaSb nanoparticles embedded in SiO2 matrices were fabricated by radio-frequency magnetron co-sputtering. Transmission electron microscope and X-ray diffraction pattern indicate that the GaSb nanoparticles were uniformly dispersed in SiO2 matrices. Room temperature transmission spectra exhibit a blue shift of about 2.73 eV. The blue shift increases with decreasing size of GaSb nanoparticles, suggesting the existence of quantum size effects. Room temperature Raman spectra show that there is a larger Raman peak red shift and broadening of the composite films than that of bulk GaSb. This phenomenon is explained by photon confinement effect and tensile stress effect.