期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
《窗景》
1
作者 杨雨婷 《流行色》 2019年第9期35-35,共1页
关键词 《窗景》
下载PDF
妙文收购站
2
《中等职业教育》 2004年第21期32-34,共3页
这里是妙文收购站,站长一把抓向大家问好!小站才开张不久,目前正在大力收购天下之妙文趣文,诚望大家在学业有成之余,伸出你们那敏锐的探头,去寻寻觅觅吧。可以是哲理的闪烁、思辨的火花,也可以是奇闻趣事、科技新知;读之让人刻... 这里是妙文收购站,站长一把抓向大家问好!小站才开张不久,目前正在大力收购天下之妙文趣文,诚望大家在学业有成之余,伸出你们那敏锐的探头,去寻寻觅觅吧。可以是哲理的闪烁、思辨的火花,也可以是奇闻趣事、科技新知;读之让人刻骨铭心称佳,阅后令人会心一笑者也行。一旦有了收获,快快向我站投售;若被收购,价格保证公道。最后别忘了写明刊登原文的书名及刊名,以及原文的作者。等着你哦! 展开更多
关键词 刘燕敏 《窗景》 《何处有障碍》 张小失 中等职业学校 语文 小品文 阅读欣赏
下载PDF
A data-driven threshold for wavelet sliding window denoising in mechanical fault detection 被引量:9
3
作者 CHEN YiMin ZI YanYang +2 位作者 CAO HongRui HE ZhengJia SUN HaiLiang 《Science China(Technological Sciences)》 SCIE EI CAS 2014年第3期589-597,共9页
Wavelet denoising is an effective approach to extract fault features from strong background noise.It has been widely used in mechanical fault detection and shown excellent performance.However,traditional thresholds ar... Wavelet denoising is an effective approach to extract fault features from strong background noise.It has been widely used in mechanical fault detection and shown excellent performance.However,traditional thresholds are not suitable for nonstationary signal denoising because they set universal thresholds for different wavelet coefficients.Therefore,a data-driven threshold strategy is proposed in this paper.First,the signal is decomposed into different subbands by wavelet transformation.Then a data-driven threshold is derived by estimating the noise power spectral density in different subbands.Since the data-driven threshold is dependent on the noise estimation and adapted to data,it is more robust and accurate for denoising than traditional thresholds.Meanwhile,sliding window method is adopted to set a flexible local threshold.When this method was applied to simulation signal and an inner race fault diagnostic case of dedusting fan bearing,the proposed method has good result and provides valuable advantages over traditional methods in the fault detection of rotating machines. 展开更多
关键词 wavelet denoising data-driven threshold noise estimation bearing fault diagnosis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部