A collocated finite volume method on unstructured meshes is introduced to simulate the viscoelastic flow of the polymer melt with viscous dissipation past a confined cylinder.The constitutive equation for the simulati...A collocated finite volume method on unstructured meshes is introduced to simulate the viscoelastic flow of the polymer melt with viscous dissipation past a confined cylinder.The constitutive equation for the simulations is non-isothermal FENE-P model,which is derived from the molecular theories.The temperature effect on the macroscopic fields(e.g.,velocity,stress) and microscopic fields(e.g.,molecular orientation,deformation,stretch) is investigated by comparison of isothermal and non-isothermal situations.This investigation indicates that temperature rise caused by viscous dissipation should not be neglected since it has significant effect on the macroscopic and microscopic properties of the polymer melt.展开更多
Completely solving the dissipative dynamics of nonlinear Jaynes-Cumming model is a very difficult task.In our recent work (Phys. Lett. A284 (2001) 156), we just obtained analytical results of the field dissipative dyn...Completely solving the dissipative dynamics of nonlinear Jaynes-Cumming model is a very difficult task.In our recent work (Phys. Lett. A284 (2001) 156), we just obtained analytical results of the field dissipative dynamicsof the nonlinear JCM. In the present paper, employing the perturbative expansion of master equation, we obtain thedensity operator of the system (field +atom). The coherence losses of the system and of the atom are investigated whentwo-photon process is involved. We also study the effect of different atomic initial states and the influence of the fieldamplitude on the atomic coherence loss.展开更多
基金Supported by the National Natural Science Foundation of China(10590353 10871159) the National Basic Research Program of China(2005CB321704) the Doctoral Foundation of Northwestern Polytechnical University(CX200817)
文摘A collocated finite volume method on unstructured meshes is introduced to simulate the viscoelastic flow of the polymer melt with viscous dissipation past a confined cylinder.The constitutive equation for the simulations is non-isothermal FENE-P model,which is derived from the molecular theories.The temperature effect on the macroscopic fields(e.g.,velocity,stress) and microscopic fields(e.g.,molecular orientation,deformation,stretch) is investigated by comparison of isothermal and non-isothermal situations.This investigation indicates that temperature rise caused by viscous dissipation should not be neglected since it has significant effect on the macroscopic and microscopic properties of the polymer melt.
基金The project supported by National Natural Science Foundation of China under Grant No.10305002
文摘Completely solving the dissipative dynamics of nonlinear Jaynes-Cumming model is a very difficult task.In our recent work (Phys. Lett. A284 (2001) 156), we just obtained analytical results of the field dissipative dynamicsof the nonlinear JCM. In the present paper, employing the perturbative expansion of master equation, we obtain thedensity operator of the system (field +atom). The coherence losses of the system and of the atom are investigated whentwo-photon process is involved. We also study the effect of different atomic initial states and the influence of the fieldamplitude on the atomic coherence loss.