Non-pillar mining technology with automatically formed roadway is a new mining method without coal pillar reservation and roadway excavation.The stability control of automatically formed roadway is the key to the succ...Non-pillar mining technology with automatically formed roadway is a new mining method without coal pillar reservation and roadway excavation.The stability control of automatically formed roadway is the key to the successful application of the new method.In order to realize the stability control of the roadway surrounding rock,the mechanical model of the roof and rib support structure is established,and the influence mechanism of the automatically formed roadway parameters on the compound force is revealed.On this basis,the roof and rib support structure technology of confined lightweight concrete is proposed,and its mechanical tests under different eccentricity are carried out.The results show that the bearing capacity of confined lightweight concrete specimens is basically the same as that of ordinary confined concrete specimens.The bearing capacity of confined lightweight concrete specimens under different eccentricities is 1.95 times higher than those of U-shaped steel specimens.By comparing the test results with the theoretical calculated results of the confined concrete,the calculation method of the bearing capacity for the confined lightweight concrete structure is selected.The design method of confined lightweight concrete support structure is established,and is successfully applied in the extra-large mine,Ningtiaota Coal Mine,China.展开更多
The Wilson coefficients of the standard model effective field theory are subject to a series of positivity bounds.It has been shown that while the positivity part of the ultraviolet(UV)partial wave unitarity leads to ...The Wilson coefficients of the standard model effective field theory are subject to a series of positivity bounds.It has been shown that while the positivity part of the ultraviolet(UV)partial wave unitarity leads to the Wilson coefficients living in a convex cone,further including the nonpositivity part caps the cone from above.For Higgs scattering,a capped positivity cone was obtained using a simplified,linear unitarity condition without utilizing the full internal symmetries of Higgs scattering.Here,we further implement stronger nonlinear unitarity conditions from the UV,which generically gives rise to better bounds.We show that,for the Higgs case in particular,while the nonlinear unitarity conditions per se do not enhance the bounds,the fuller use of the internal symmetries do shrink the capped positivity cone significantly.展开更多
To minimize the number of solutions in 3D resistivity inversion, an inherent problem in inversion, the amount of data considered have to be large and prior constraints need to be applied. Geological and geophysical da...To minimize the number of solutions in 3D resistivity inversion, an inherent problem in inversion, the amount of data considered have to be large and prior constraints need to be applied. Geological and geophysical data regarding the extent of a geological anomaly are important prior information. We propose the use of shape constraints in 3D electrical resistivity inversion, Three weighted orthogonal vectors (a normal and two tangent vectors) were used to control the resistivity differences at the boundaries of the anomaly. The spatial shape of the anomaly and the constraints on the boundaries of the anomaly are thus established. We incorporated the spatial shape constraints in the objective function of the 3D resistivity inversion and constructed the 3D resistivity inversion equation with spatial shape constraints. Subsequently, we used numerical modeling based on prior spatial shape data to constrain the direction vectors and weights of the 3D resistivity inversion. We established a reasonable range between the direction vectors and weights, and verified the feasibility and effectiveness of using spatial shape prior constraints in reducing excessive structures and the number of solutions. We applied the prior spatially shape-constrained inversion method to locate the aquifer at the Guangzhou subway. The spatial shape constraints were taken from ground penetrating radar data. The inversion results for the location and shape of the aquifer agree well with drilling data, and the number of inversion solutions is significantly reduced.展开更多
The use of low-frequency seismic data improves the seismic resolution, and the imaging and inversion quality. Furthermore, low-frequency data are applied in hydrocarbon exploration; thus, we need to better use low-fre...The use of low-frequency seismic data improves the seismic resolution, and the imaging and inversion quality. Furthermore, low-frequency data are applied in hydrocarbon exploration; thus, we need to better use low-frequency data. In seismic wavelets, the loss of low-frequency data decreases the main lobe amplitude and increases the first side lobe amplitude and results in the periodic shocking attenuation of the secondary side lobe. The loss of low frequencies likely produces pseudo-events and the false appearance of higher resolution. We use models to examine the removal of low-frequency data in seismic data processing. The results suggest that the removal of low frequencies create distortions, especially for steep structures and thin layers. We also perform low-frequency expansion using compressed sensing and sparse constraints and develop the corresponding module. Finally, we apply the proposed method to real common image point gathers with good results.展开更多
In this paper, we built upon the estimating primaries by sparse inversion (EPSI) method. We use the 3D curvelet transform and modify the EPSI method to the sparse inversion of the biconvex optimization and Ll-norm r...In this paper, we built upon the estimating primaries by sparse inversion (EPSI) method. We use the 3D curvelet transform and modify the EPSI method to the sparse inversion of the biconvex optimization and Ll-norm regularization, and use alternating optimization to directly estimate the primary reflection coefficients and source wavelet. The 3D curvelet transform is used as a sparseness constraint when inverting the primary reflection coefficients, which results in avoiding the prediction subtraction process in the surface-related multiples elimination (SRME) method. The proposed method not only reduces the damage to the effective waves but also improves the elimination of multiples. It is also a wave equation- based method for elimination of surface multiple reflections, which effectively removes surface multiples under complex submarine conditions.展开更多
The Robinson convolution model is mainly restricted by three inappropriate assumptions, i.e., statistically white reflectivity, minimum-phase wavelet, and stationarity. Modern reflectivity inversion methods(e.g., spa...The Robinson convolution model is mainly restricted by three inappropriate assumptions, i.e., statistically white reflectivity, minimum-phase wavelet, and stationarity. Modern reflectivity inversion methods(e.g., sparsity-constrained deconvolution) generally attempt to suppress the problems associated with the first two assumptions but often ignore that seismic traces are nonstationary signals, which undermines the basic assumption of unchanging wavelet in reflectivity inversion. Through tests on reflectivity series, we confirm the effects of nonstationarity on reflectivity estimation and the loss of significant information, especially in deep layers. To overcome the problems caused by nonstationarity, we propose a nonstationary convolutional model, and then use the attenuation curve in log spectra to detect and correct the influences of nonstationarity. We use Gabor deconvolution to handle nonstationarity and sparsity-constrained deconvolution to separating reflectivity and wavelet. The combination of the two deconvolution methods effectively handles nonstationarity and greatly reduces the problems associated with the unreasonable assumptions regarding reflectivity and wavelet. Using marine seismic data, we show that correcting nonstationarity helps recover subtle reflectivity information and enhances the characterization of details with respect to the geological record.展开更多
This paper presents a dynamic analysis of vibro impacts of a slender cantilever beam carrying a lumped tip mass between two rigid stops subjected to horizontal harmonic excitation of basement. This vibro impacting s...This paper presents a dynamic analysis of vibro impacts of a slender cantilever beam carrying a lumped tip mass between two rigid stops subjected to horizontal harmonic excitation of basement. This vibro impacting system is a simplified model for the vibro impacts between the shell of a flying vehicle and its interior components. The dynamic equation of vibro impacting system is established on the basis of the Galerkin method, the Lagrange method and the Newton rule of collision. The effects of excitation frequency, excitation amplitude and the clearance between the tip mass and a stop on system dynamics are numerically investigated. The nonlinear dynamics, especially various chaotic motions, are observed by using the Poincaré section. Numerical results show that the longterm behavior of system mainly depends on the above three parameters, and there exist a series of processes and corresponding reverse processes, during which a periodic motion undergoes period doubling bifurcation and then becomes chaotic motion, or vice versa.展开更多
The estimation of sparse underwater acoustic channels with a large time delay spread is investigated under the framework of compressed sensing. For these types of channels, the excessively long impulse response will s...The estimation of sparse underwater acoustic channels with a large time delay spread is investigated under the framework of compressed sensing. For these types of channels, the excessively long impulse response will significantly degrade the convergence rate and tracking capability of the traditional estimation algorithms such as least squares (LS), while excluding the use of the delay-Doppler spread function due to huge computational complexity. By constructing a Toeplitz matrix with a training sequence as the measurement matrix, the estimation problem of long sparse acoustic channels is formulated into a compressed sensing problem to facilitate the efficient exploitation of sparsity. Furthermore, unlike the traditional l1 norm or exponent-based approximation l0 norm sparse recovery strategy, a novel variant of approximate l0 norm called AL0 is proposed, minimization of which leads to the derivation of a hybrid approach by iteratively projecting the steepest descent solution to the feasible set. Numerical simulations as well as sea trial experiments are compared and analyzed to demonstrate the superior performance of the proposed algorithm.展开更多
A new method for shape modification of non-uniform rational B-splines (NURBS) curves was presented, which was based on constrained optimization by means of altering the corresponding weights of their control points. U...A new method for shape modification of non-uniform rational B-splines (NURBS) curves was presented, which was based on constrained optimization by means of altering the corresponding weights of their control points. Using this method, the original NURBS curve was modified to satisfy the specified geometric constraints, including single point and multi-point constraints. With the introduction of free parameters, the shapes of modified NURBS curves could be further controlled by users without destroying geometric constraints and seem more naturally. Since explicit formulae were derived to compute new weights of the modified curve, the method was simple and easy to program. Practical examples showed that the method was applicable for computer aided design (CAD) system.展开更多
The three parameters of P-wave velocity, S-wave velocity, and density have remarkable differences in conventional prestack inversion accuracy, so study of the consistency inversion of the "three parameters" is very ...The three parameters of P-wave velocity, S-wave velocity, and density have remarkable differences in conventional prestack inversion accuracy, so study of the consistency inversion of the "three parameters" is very important. In this paper, we present a new inversion algorithm and approach based on the in-depth analysis of the causes in their accuracy differences. With this new method, the inversion accuracy of the three parameters is improved synchronously by reasonable approximations and mutual constraint among the parameters. Theoretical model calculations and actual data applications with this method indicate that the three elastic parameters all have high inversion accuracy and maintain consistency, which also coincides with the theoretical model and actual data. This method has good application prospects.展开更多
Numerical analysis is carried out to study the sectional properties of the fiber-reinforced polymer(FRP)-confined reinforced concrete(RC)circular columns. The axial load ratio, the FRP confinement ratio and the lo...Numerical analysis is carried out to study the sectional properties of the fiber-reinforced polymer(FRP)-confined reinforced concrete(RC)circular columns. The axial load ratio, the FRP confinement ratio and the longitudinal reinforcement characteristic value are the three main parameters that can influence the neutral axis depth when concrete compression strain reaches an ultimate value. The formula for computing the central angle θ, corresponding to the compression zone, is established according to the data regression of the numerical analysis results. The numerical analysis results demonstrate that the concrete stress enhancement from transverse confinement and strain hardening of the longitudinal reinforcement can cause a much greater flexural strength than that defined by the design code. Based on the analytical studies and the test results of 36 large scale columns, the formula to calculate the flexural strength when columns fail under seismic loading is proposed, and the calculated results agree well with the test results. Finally, parametric studies are conducted on a typical column with different axial load ratios, longitudinal reinforcement characteristic value and FRP confinement ratios. Analysis of the results shows that the calculated flexural strength can be increased by 50% compared to that of unconfined columns defined by the code.展开更多
In order to improve the effectiveness of semantic web service discovery, the semantic bias between an interface parameter and an annotation is reduced by extracting semantic restrictions for the annotation from the de...In order to improve the effectiveness of semantic web service discovery, the semantic bias between an interface parameter and an annotation is reduced by extracting semantic restrictions for the annotation from the description context and generating refined semantic annotations, and then the semantics of the web service is refined. These restrictions are dynamically extracted from the parsing tree of the description text, with the guide of the restriction template extracted from the ontology definition. New semantic annotations are then generated by combining the original concept with the restrictions and represented via refined concept expressions. In addition, a novel semantic similarity measure for refined concept expressions is proposed for semantic web service discovery. Experimental results show that the matchmaker based on this method can improve the average precision of discovery and exhibit low computational complexity. Reducing the semantic bias by utilizing restriction information of annotations can refine the semantics of the web service and improve the discovery effectiveness.展开更多
In order to overcome the shortcomings that the reconstructed spectral reflectance may be negative when using the classic principal component analysis (PCA)to reduce the dimensions of the multi-spectral data, a nonne...In order to overcome the shortcomings that the reconstructed spectral reflectance may be negative when using the classic principal component analysis (PCA)to reduce the dimensions of the multi-spectral data, a nonnegative constrained principal component analysis method is proposed to construct a low-dimensional multi-spectral space and accomplish the conversion between the new constructed space and the multispectral space. First, the reason behind the negative data is analyzed and a nonnegative constraint is imposed on the classic PCA. Then a set of nonnegative linear independence weight vectors of principal components is obtained, by which a lowdimensional space is constructed. Finally, a nonlinear optimization technique is used to determine the projection vectors of the high-dimensional multi-spectral data in the constructed space. Experimental results show that the proposed method can keep the reconstructed spectral data in [ 0, 1 ]. The precision of the space created by the proposed method is equivalent to or even higher than that by the PCA.展开更多
To overcome some drawbacks of Viterbi algorithm (VA), such as exponential growing complexity of decoding, and its poor performance under bad channel conditions, some available known information must be used as cons...To overcome some drawbacks of Viterbi algorithm (VA), such as exponential growing complexity of decoding, and its poor performance under bad channel conditions, some available known information must be used as constrained condition and apriori knowledge for decoding. A new constrained VA is proposed by adding con- straint bits directly for conventional codec. Compared with the conventional VA, under the bad channel condi- tion, the proposed scheme can improve the peak signal to noise ratio (PSNR) of the decoding image 2--10 dB by changing the number of constrained bits. Experimental results show that it is an efficient error-controlling way for the transmission of set partitioning in hierarchical trees (SPIHT) coded image.展开更多
Conventional joint PP-PS inversion is based on approximations of the Zoeppritz equations and assumes constant VP/VS;therefore,the inversion precision and stability cannot satisfy current exploration requirements.We pr...Conventional joint PP-PS inversion is based on approximations of the Zoeppritz equations and assumes constant VP/VS;therefore,the inversion precision and stability cannot satisfy current exploration requirements.We propose a joint PP-PS inversion method based on the exact Zoeppritz equations that combines Bayesian statistics and generalized linear inversion.A forward model based on the exact Zoeppritz equations is built to minimize the error of the approximations in the large-angle data,the prior distribution of the model parameters is added as a regularization item to decrease the ill-posed nature of the inversion,low-frequency constraints are introduced to stabilize the low-frequency data and improve robustness,and a fast algorithm is used to solve the objective function while minimizing the computational load.The proposed method has superior antinoising properties and well reproduces real data.展开更多
基金Project(2023YFC2907600)supported by the National Key Research and Development Program of ChinaProjects(42077267,42277174,52074164)supported by the National Natural Science Foundation of ChinaProject(2024JCCXSB01)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Non-pillar mining technology with automatically formed roadway is a new mining method without coal pillar reservation and roadway excavation.The stability control of automatically formed roadway is the key to the successful application of the new method.In order to realize the stability control of the roadway surrounding rock,the mechanical model of the roof and rib support structure is established,and the influence mechanism of the automatically formed roadway parameters on the compound force is revealed.On this basis,the roof and rib support structure technology of confined lightweight concrete is proposed,and its mechanical tests under different eccentricity are carried out.The results show that the bearing capacity of confined lightweight concrete specimens is basically the same as that of ordinary confined concrete specimens.The bearing capacity of confined lightweight concrete specimens under different eccentricities is 1.95 times higher than those of U-shaped steel specimens.By comparing the test results with the theoretical calculated results of the confined concrete,the calculation method of the bearing capacity for the confined lightweight concrete structure is selected.The design method of confined lightweight concrete support structure is established,and is successfully applied in the extra-large mine,Ningtiaota Coal Mine,China.
基金supported by the Fundamental Research Funds for the Central Universities(WK2030000036)the National Natural Science Foundation of China(12075233).
文摘The Wilson coefficients of the standard model effective field theory are subject to a series of positivity bounds.It has been shown that while the positivity part of the ultraviolet(UV)partial wave unitarity leads to the Wilson coefficients living in a convex cone,further including the nonpositivity part caps the cone from above.For Higgs scattering,a capped positivity cone was obtained using a simplified,linear unitarity condition without utilizing the full internal symmetries of Higgs scattering.Here,we further implement stronger nonlinear unitarity conditions from the UV,which generically gives rise to better bounds.We show that,for the Higgs case in particular,while the nonlinear unitarity conditions per se do not enhance the bounds,the fuller use of the internal symmetries do shrink the capped positivity cone significantly.
基金supported by the National Program on Key Basic Research Project of China(973 Program)(No.2013CB036002,No.2014CB046901)the National Major Scientific Equipment Developed Special Project(No.51327802)+3 种基金National Natural Science Foundation of China(No.51139004,No.41102183)the Research Fund for the Doctoral Program of Higher Education of China(No.20110131120070)Natural Science Foundation of Shandong Province(No.ZR2011EEQ013)the Graduate Innovation Fund of Shandong University(No.YZC12083)
文摘To minimize the number of solutions in 3D resistivity inversion, an inherent problem in inversion, the amount of data considered have to be large and prior constraints need to be applied. Geological and geophysical data regarding the extent of a geological anomaly are important prior information. We propose the use of shape constraints in 3D electrical resistivity inversion, Three weighted orthogonal vectors (a normal and two tangent vectors) were used to control the resistivity differences at the boundaries of the anomaly. The spatial shape of the anomaly and the constraints on the boundaries of the anomaly are thus established. We incorporated the spatial shape constraints in the objective function of the 3D resistivity inversion and constructed the 3D resistivity inversion equation with spatial shape constraints. Subsequently, we used numerical modeling based on prior spatial shape data to constrain the direction vectors and weights of the 3D resistivity inversion. We established a reasonable range between the direction vectors and weights, and verified the feasibility and effectiveness of using spatial shape prior constraints in reducing excessive structures and the number of solutions. We applied the prior spatially shape-constrained inversion method to locate the aquifer at the Guangzhou subway. The spatial shape constraints were taken from ground penetrating radar data. The inversion results for the location and shape of the aquifer agree well with drilling data, and the number of inversion solutions is significantly reduced.
基金supported by the National Science and Technology Major Project(No.2011ZX05051)Science and Technology Project of Shengli Oilfi eld(No.YKW1301)
文摘The use of low-frequency seismic data improves the seismic resolution, and the imaging and inversion quality. Furthermore, low-frequency data are applied in hydrocarbon exploration; thus, we need to better use low-frequency data. In seismic wavelets, the loss of low-frequency data decreases the main lobe amplitude and increases the first side lobe amplitude and results in the periodic shocking attenuation of the secondary side lobe. The loss of low frequencies likely produces pseudo-events and the false appearance of higher resolution. We use models to examine the removal of low-frequency data in seismic data processing. The results suggest that the removal of low frequencies create distortions, especially for steep structures and thin layers. We also perform low-frequency expansion using compressed sensing and sparse constraints and develop the corresponding module. Finally, we apply the proposed method to real common image point gathers with good results.
基金supported by the National Science and Technology Major Project (No.2011ZX05023-005-008)
文摘In this paper, we built upon the estimating primaries by sparse inversion (EPSI) method. We use the 3D curvelet transform and modify the EPSI method to the sparse inversion of the biconvex optimization and Ll-norm regularization, and use alternating optimization to directly estimate the primary reflection coefficients and source wavelet. The 3D curvelet transform is used as a sparseness constraint when inverting the primary reflection coefficients, which results in avoiding the prediction subtraction process in the surface-related multiples elimination (SRME) method. The proposed method not only reduces the damage to the effective waves but also improves the elimination of multiples. It is also a wave equation- based method for elimination of surface multiple reflections, which effectively removes surface multiples under complex submarine conditions.
基金funded by the National Basic Research Program of China(973 Program)(Grant No.2011CB201100)Major Program of the National Natural Science Foundation of China(Grant No.2011ZX05004003)
文摘The Robinson convolution model is mainly restricted by three inappropriate assumptions, i.e., statistically white reflectivity, minimum-phase wavelet, and stationarity. Modern reflectivity inversion methods(e.g., sparsity-constrained deconvolution) generally attempt to suppress the problems associated with the first two assumptions but often ignore that seismic traces are nonstationary signals, which undermines the basic assumption of unchanging wavelet in reflectivity inversion. Through tests on reflectivity series, we confirm the effects of nonstationarity on reflectivity estimation and the loss of significant information, especially in deep layers. To overcome the problems caused by nonstationarity, we propose a nonstationary convolutional model, and then use the attenuation curve in log spectra to detect and correct the influences of nonstationarity. We use Gabor deconvolution to handle nonstationarity and sparsity-constrained deconvolution to separating reflectivity and wavelet. The combination of the two deconvolution methods effectively handles nonstationarity and greatly reduces the problems associated with the unreasonable assumptions regarding reflectivity and wavelet. Using marine seismic data, we show that correcting nonstationarity helps recover subtle reflectivity information and enhances the characterization of details with respect to the geological record.
文摘This paper presents a dynamic analysis of vibro impacts of a slender cantilever beam carrying a lumped tip mass between two rigid stops subjected to horizontal harmonic excitation of basement. This vibro impacting system is a simplified model for the vibro impacts between the shell of a flying vehicle and its interior components. The dynamic equation of vibro impacting system is established on the basis of the Galerkin method, the Lagrange method and the Newton rule of collision. The effects of excitation frequency, excitation amplitude and the clearance between the tip mass and a stop on system dynamics are numerically investigated. The nonlinear dynamics, especially various chaotic motions, are observed by using the Poincaré section. Numerical results show that the longterm behavior of system mainly depends on the above three parameters, and there exist a series of processes and corresponding reverse processes, during which a periodic motion undergoes period doubling bifurcation and then becomes chaotic motion, or vice versa.
基金The National Natural Science Foundation of China(No.11274259)the Open Project Program of the Key Laboratory of Underwater Acoustic Signal Processing of Ministry of Education(No.UASP1305)
文摘The estimation of sparse underwater acoustic channels with a large time delay spread is investigated under the framework of compressed sensing. For these types of channels, the excessively long impulse response will significantly degrade the convergence rate and tracking capability of the traditional estimation algorithms such as least squares (LS), while excluding the use of the delay-Doppler spread function due to huge computational complexity. By constructing a Toeplitz matrix with a training sequence as the measurement matrix, the estimation problem of long sparse acoustic channels is formulated into a compressed sensing problem to facilitate the efficient exploitation of sparsity. Furthermore, unlike the traditional l1 norm or exponent-based approximation l0 norm sparse recovery strategy, a novel variant of approximate l0 norm called AL0 is proposed, minimization of which leads to the derivation of a hybrid approach by iteratively projecting the steepest descent solution to the feasible set. Numerical simulations as well as sea trial experiments are compared and analyzed to demonstrate the superior performance of the proposed algorithm.
文摘A new method for shape modification of non-uniform rational B-splines (NURBS) curves was presented, which was based on constrained optimization by means of altering the corresponding weights of their control points. Using this method, the original NURBS curve was modified to satisfy the specified geometric constraints, including single point and multi-point constraints. With the introduction of free parameters, the shapes of modified NURBS curves could be further controlled by users without destroying geometric constraints and seem more naturally. Since explicit formulae were derived to compute new weights of the modified curve, the method was simple and easy to program. Practical examples showed that the method was applicable for computer aided design (CAD) system.
基金sponsored by the National Major Program (No. 2011ZX05006-006)the 973 Program of China (No. 2011CB201104)Technical Research of Elastic Flooding Boundary and Well Network Optimization at the Development Late Stage of Low Permeable Oil Field (No. 2011ZX05009)
文摘The three parameters of P-wave velocity, S-wave velocity, and density have remarkable differences in conventional prestack inversion accuracy, so study of the consistency inversion of the "three parameters" is very important. In this paper, we present a new inversion algorithm and approach based on the in-depth analysis of the causes in their accuracy differences. With this new method, the inversion accuracy of the three parameters is improved synchronously by reasonable approximations and mutual constraint among the parameters. Theoretical model calculations and actual data applications with this method indicate that the three elastic parameters all have high inversion accuracy and maintain consistency, which also coincides with the theoretical model and actual data. This method has good application prospects.
基金The National Basic Research Program of China (973 Program)(No.2007CB714200)the National Natural Science Foundationof China (No.50608015,50908102)
文摘Numerical analysis is carried out to study the sectional properties of the fiber-reinforced polymer(FRP)-confined reinforced concrete(RC)circular columns. The axial load ratio, the FRP confinement ratio and the longitudinal reinforcement characteristic value are the three main parameters that can influence the neutral axis depth when concrete compression strain reaches an ultimate value. The formula for computing the central angle θ, corresponding to the compression zone, is established according to the data regression of the numerical analysis results. The numerical analysis results demonstrate that the concrete stress enhancement from transverse confinement and strain hardening of the longitudinal reinforcement can cause a much greater flexural strength than that defined by the design code. Based on the analytical studies and the test results of 36 large scale columns, the formula to calculate the flexural strength when columns fail under seismic loading is proposed, and the calculated results agree well with the test results. Finally, parametric studies are conducted on a typical column with different axial load ratios, longitudinal reinforcement characteristic value and FRP confinement ratios. Analysis of the results shows that the calculated flexural strength can be increased by 50% compared to that of unconfined columns defined by the code.
基金The National Basic Research Program of China (973Program)(No.2005CB321802)Program for New Century Excellent Talents in University (No. NCET-06-0926)the National Natural Science Foundation of China (No.60403050,90612009)
文摘In order to improve the effectiveness of semantic web service discovery, the semantic bias between an interface parameter and an annotation is reduced by extracting semantic restrictions for the annotation from the description context and generating refined semantic annotations, and then the semantics of the web service is refined. These restrictions are dynamically extracted from the parsing tree of the description text, with the guide of the restriction template extracted from the ontology definition. New semantic annotations are then generated by combining the original concept with the restrictions and represented via refined concept expressions. In addition, a novel semantic similarity measure for refined concept expressions is proposed for semantic web service discovery. Experimental results show that the matchmaker based on this method can improve the average precision of discovery and exhibit low computational complexity. Reducing the semantic bias by utilizing restriction information of annotations can refine the semantics of the web service and improve the discovery effectiveness.
基金The Pre-Research Foundation of National Ministries andCommissions (No9140A16050109DZ01)the Scientific Research Program of the Education Department of Shanxi Province (No09JK701)
文摘In order to overcome the shortcomings that the reconstructed spectral reflectance may be negative when using the classic principal component analysis (PCA)to reduce the dimensions of the multi-spectral data, a nonnegative constrained principal component analysis method is proposed to construct a low-dimensional multi-spectral space and accomplish the conversion between the new constructed space and the multispectral space. First, the reason behind the negative data is analyzed and a nonnegative constraint is imposed on the classic PCA. Then a set of nonnegative linear independence weight vectors of principal components is obtained, by which a lowdimensional space is constructed. Finally, a nonlinear optimization technique is used to determine the projection vectors of the high-dimensional multi-spectral data in the constructed space. Experimental results show that the proposed method can keep the reconstructed spectral data in [ 0, 1 ]. The precision of the space created by the proposed method is equivalent to or even higher than that by the PCA.
文摘To overcome some drawbacks of Viterbi algorithm (VA), such as exponential growing complexity of decoding, and its poor performance under bad channel conditions, some available known information must be used as constrained condition and apriori knowledge for decoding. A new constrained VA is proposed by adding con- straint bits directly for conventional codec. Compared with the conventional VA, under the bad channel condi- tion, the proposed scheme can improve the peak signal to noise ratio (PSNR) of the decoding image 2--10 dB by changing the number of constrained bits. Experimental results show that it is an efficient error-controlling way for the transmission of set partitioning in hierarchical trees (SPIHT) coded image.
基金supported by the 863 Program of China(No.2013AA064201)
文摘Conventional joint PP-PS inversion is based on approximations of the Zoeppritz equations and assumes constant VP/VS;therefore,the inversion precision and stability cannot satisfy current exploration requirements.We propose a joint PP-PS inversion method based on the exact Zoeppritz equations that combines Bayesian statistics and generalized linear inversion.A forward model based on the exact Zoeppritz equations is built to minimize the error of the approximations in the large-angle data,the prior distribution of the model parameters is added as a regularization item to decrease the ill-posed nature of the inversion,low-frequency constraints are introduced to stabilize the low-frequency data and improve robustness,and a fast algorithm is used to solve the objective function while minimizing the computational load.The proposed method has superior antinoising properties and well reproduces real data.