The effect of different refining processes on inclusions and mechanical properties of cast Al-2Li-2Cu-0.2Zr alloy was investigated, including two-stage hexachloroethane (C2Cl6) refining process, two-stage rotating gas...The effect of different refining processes on inclusions and mechanical properties of cast Al-2Li-2Cu-0.2Zr alloy was investigated, including two-stage hexachloroethane (C2Cl6) refining process, two-stage rotating gas bubbling refining process and two-stage composite refining process. It was found that the two-stage composite refining process, which combined C2Cl6 and rotating gas bubbling, can significantly improve the melt purity and mechanical properties of cast Al-2Li-2Cu-0.2Zr alloy. Compared to the unrefined alloy, the volume fraction of gas porosity defects and slag inclusions decreased from 1.47% to 0.12%, and the yield strength, ultimate tensile strength and elongation of as-quenched alloy increased from 113 MPa,179 MPa and 3.9% to 142 MPa, 293 MPa and 18.1%, respectively. C2Cl6 was first utilized to degas and remove large size slag inclusions before lithium addition, and then the rotating gas bubbling was utilized to do the further degassing and remove the suspended fine inclusions after lithium addition. The two-stage composite refining process can take advantage of two methods and get the remarkable refining effect.展开更多
A new hydrometallurgical process of chlorination-distillation at low temperatures about 100 °C was developed for recovery of valuable metal and environmental protection. This process was used to treat flue dust c...A new hydrometallurgical process of chlorination-distillation at low temperatures about 100 °C was developed for recovery of valuable metal and environmental protection. This process was used to treat flue dust containing arsenic and antimony and satisfactory results were obtained. Over 99% of arsenic and antimony were recovered, and high purity As2O3 and SbCl3 were produced. A metallic alcoholate technique was developed and proved to be of significant to the utilization of antimony resources. Using this technique, a number of antimony oxide powders were prepared, such as high purity and ultrafine Sb2O3, ultrafine Sb2O3-Sb2O5 and Sb2O3-SnO2 composite powders.展开更多
CdTe films are prepared by closed-space sublimation technology. Dependence of film crystalline on substrate materials and substrate temperature is investigated. It is found that films exhibit higher crystallinity at s...CdTe films are prepared by closed-space sublimation technology. Dependence of film crystalline on substrate materials and substrate temperature is investigated. It is found that films exhibit higher crystallinity at substrate temperature higher than 400 ℃. And the CdTe films deposited on CdS films with higher crystallinity have bigger crystallite and higher uniformity. Treatment with CdCl 2 methanol solution promotes the crystallite growth of CdTe films during annealing.展开更多
The viscosities of pure water,the acetic acid+water binary system,and the p-xylene+acetic acid+ water ternary system at different concentrations were determined with a rolling-ball viscometer at temperatures from 313....The viscosities of pure water,the acetic acid+water binary system,and the p-xylene+acetic acid+ water ternary system at different concentrations were determined with a rolling-ball viscometer at temperatures from 313.15 to 473.15 K and pressures from 0.10 to 3.20 MPa.The viscosity data were fitted by a correlation equation for the estimation of the mixture viscosities.The average absolute deviations(AAD)of the correlation for binary and ternary systems are 2.48%and 1.77%,respectively.展开更多
Genomic mining has identifi ed a novel microbial alkaline esterase from the Indian Ocean. This esterase was overexpressed in E. coli BL21(DE3) and further functionally characterized. Under optimal conditions(10 mmo...Genomic mining has identifi ed a novel microbial alkaline esterase from the Indian Ocean. This esterase was overexpressed in E. coli BL21(DE3) and further functionally characterized. Under optimal conditions(10 mmol/L substrate, p H 6.0, 2 h at 40 ℃), this esterase can hydrolyze racemic methyl mandelate to( R)-methyl mandelate with very high optical purity(e. e. 〉99%) and yield(nearly 90%). Interestingly, the stereoselectivity of this esterase is opposite to that of two previously reported lipases that can generate( S)-methyl mandelate through the hydrolysis of racemic methyl mandelate. No organic solvents or other additives were required to optimize the optical purity and production of the fi nal chiral product(R)-methyl mandelate, which can potentially simplify the production procedure of( R)-methyl mandelate catalyzed by esterase.展开更多
We study the interaction between a single-mode quantized field and a quantum system composed of two qubits. We suppose that two qubits initially be prepared in the mixed and separable state, and study how entanglement...We study the interaction between a single-mode quantized field and a quantum system composed of two qubits. We suppose that two qubits initially be prepared in the mixed and separable state, and study how entanglement between two qubits arises in the course of evolution according to the Jaynes-Cummings type interaction with nonclassical radiation field. We also investigate the relation between entanglement and purity of qubit subsystem. We show that different photon statistics have different effects on the dynamical behavior of the qubit subsystem. When the qubits are initially prepared in the maximally mixed and separable state, for coherent state field we cannot find entanglement between two qubits; for squeezed state field entanglement between two qubits exists in several short period of time; for even and odd coherent state fields of large photon number, the dynamical behavior of the entanglement between two qubits shows collapse and revival phenomenon. For odd coherent state field of small photon number, the entanglement with both qubits initially prepared in maximally mixed state can be stronger than that with both qubits initially prepared in pure states. For fields of small photon number, the entanglement strongly depends on the states they are initially prepared in. For coherent state field, and odd and even coherent state fields of large photon number, the entanglement only depends on the purity of the initial state of qubit subsystem. We also show that during the evolution the unentangled state may be purer than the entangled state, and the maximum degree of entanglement may not occur at the time when the qubit subsystem is in the purist state.展开更多
This article discusses the variation of the knotted picture of the quantum pure state with the variation of the complex coefficients α and β. It is shown that there are three kinds of link that correspond to three ...This article discusses the variation of the knotted picture of the quantum pure state with the variation of the complex coefficients α and β. It is shown that there are three kinds of link that correspond to three different ranks of the matrix of covariance correlation tensor, i.e., the zero rank corresponds to trivial link, the rank one corresponds to the two-component link with two crossings, and the rank three corresponds to the two-component link with four crossings.展开更多
A multi-heat pipe is a device for heat transmission. It is composed of a heating section, a cooling section and an adiabatic section. The heating and cooling sections are the same and both are connected by four circul...A multi-heat pipe is a device for heat transmission. It is composed of a heating section, a cooling section and an adiabatic section. The heating and cooling sections are the same and both are connected by four circular parallel tubes. This experimental study is performed to investigate heat transfer performance of a multi-heat pipe in the vertical orientation using pure water and GO (graphene oxide)/water nanofluid. GO/water nanofluids were synthesized by the modified Hummers method with 0.05%, 0.1%, 0.15%, and 0.2% volume concentrations. The thermal performance has been investigated with varying heat flux in the range of 10-30 W and 100% fill charge ratio. Wall temperature, thermal resistance, and heat transfer coefficient of the heat pipe are measured and compared with those for the heat pipe using pure water. The experimental results show that the evaporator wall temperature with GO nanofluid is lower than that of the base fluid. Also, the heat pipe that charged with nanofluids showed lower thermal resistance compared with pure water. Heat transfer enhancement is caused by suspended nanoparticles and is pronounced with the increase in particle volume fraction.展开更多
Purification processes are widely used in hydrogen networks of refineries to increase hydrogen reuse. In refineries, hydrogen purification techniques include hydrocarbon, hydrogen sulfide and CO removal units. In addi...Purification processes are widely used in hydrogen networks of refineries to increase hydrogen reuse. In refineries, hydrogen purification techniques include hydrocarbon, hydrogen sulfide and CO removal units. In addition, light hydrocarbon recovery from the hydrogen source streams can also result in hydrogen purification. In order to simplify the superstructure and mathematical model of hydrogen network integration, the models of different purification processes are unified in this paper, including mass balance and the expressions for hydrogen recovery and impurity removal ratios, which are given for all the purification units in refineries. Based on the proposed unified model, a superstructure of hydrogen networks with purification processes is constructed.展开更多
Introducing purifiers into hydrogen network can enhance the recovery and reuse of hydrogen in refineries, further reducing the consumption of fresh hydrogen. Based on previous graphical methods, this work proposes a s...Introducing purifiers into hydrogen network can enhance the recovery and reuse of hydrogen in refineries, further reducing the consumption of fresh hydrogen. Based on previous graphical methods, this work proposes a simple and unified graphical method for integration of hydrogen networks with purification processes. Scenarios with different hydrogen concentrations of purified product can be analyzed by the unified procedure. As a result, the maximum hydrogen saved by purification reuse can he identified and the corresponding purification process can be optimized, The proposed method is easy and non-iterative, and it is valid to purification processes with any feed concentration. A conventional hydrogen network is analyzed to test the effectiveness of the proposed method.展开更多
A novel purification process is involved to obtain the high purity[>99%(by mass)]dodecanedioic acid(DC_(12)).It involves a re-crystallization followed by molecular distillation from the crude product.The objective ...A novel purification process is involved to obtain the high purity[>99%(by mass)]dodecanedioic acid(DC_(12)).It involves a re-crystallization followed by molecular distillation from the crude product.The objective of this study is to investigate general conditions,feed rate,distilling temperature and vacuum,necessary for centrifugal distillation of DC_(12).Under the optimum conditions,distilling temperature 180℃,pressure 30 Pa and feed flow rate700 ml·h^(-1),the purity of DC_(12) in the residence reached 97.55%with a yield of 53.18%by the analysis of gas chromatography.Multiple-pass distillation made a considerable contribution by improving the purity to99.22%.Additionally,the effect of pretreatment(re-crystallization) on distillation process was revealed through a series of comparative experiments.展开更多
The main focus of the present work is to investigate Critical Heat Flux (CHF) enhancement using CuO nanofluid relative to CHF of pure water. To estimate the effect of nanoparticles on the CHF, pool boiling CHF values ...The main focus of the present work is to investigate Critical Heat Flux (CHF) enhancement using CuO nanofluid relative to CHF of pure water. To estimate the effect of nanoparticles on the CHF, pool boiling CHF values were measured for various volume concentrations of CuO nanofluid and compared with pure water. CHF enhancement of 130% was recorded at 0.2 % by volume of CuO nano-fluids. Surface roughness of the heater surface exposed to three measured heating cycles indicated surface modifications at different volume concentrations of nanofluid. SEM image of the heater surface revealed porous layer build up, which is thought to be the reason for CHF enhancement.展开更多
Blood flow model is recycled to study the influence of magnetic field and nanoparticles in tapered stenosed arteries. The metallic nanoparticles for the blood flow with water as base fluid are not explored so far. The...Blood flow model is recycled to study the influence of magnetic field and nanoparticles in tapered stenosed arteries. The metallic nanoparticles for the blood flow with water as base fluid are not explored so far. The representation for the blood flow is through an axially non-symmetrical but radially symmetric stenosis. Symmetry of the distribution of the wall shearing stress and resistive impedance and their growth with the deve- loping stenosis is another important feature of our analysis. Exact solutions have been evaluated for velocity, resistance impedance, wall shear stress and shearing stress at the stenosis throat. The graphical results of different types of tapered arteries (i.e. conver- ging tapering, diverging tapering, non-tapered artery) have been examined for different parameters of interest for pure water and Copper water (Cu-water).展开更多
基金Project(2016YFB0301003)supported by the National Key R&D Program of ChinaProject(51871148)supported by the National Natural Science Foundation of ChinaProject(sklmmc-kf18-02)supported by Open Research Fund of the State Key Laboratory of Metal Matrix Composites,China
文摘The effect of different refining processes on inclusions and mechanical properties of cast Al-2Li-2Cu-0.2Zr alloy was investigated, including two-stage hexachloroethane (C2Cl6) refining process, two-stage rotating gas bubbling refining process and two-stage composite refining process. It was found that the two-stage composite refining process, which combined C2Cl6 and rotating gas bubbling, can significantly improve the melt purity and mechanical properties of cast Al-2Li-2Cu-0.2Zr alloy. Compared to the unrefined alloy, the volume fraction of gas porosity defects and slag inclusions decreased from 1.47% to 0.12%, and the yield strength, ultimate tensile strength and elongation of as-quenched alloy increased from 113 MPa,179 MPa and 3.9% to 142 MPa, 293 MPa and 18.1%, respectively. C2Cl6 was first utilized to degas and remove large size slag inclusions before lithium addition, and then the rotating gas bubbling was utilized to do the further degassing and remove the suspended fine inclusions after lithium addition. The two-stage composite refining process can take advantage of two methods and get the remarkable refining effect.
文摘A new hydrometallurgical process of chlorination-distillation at low temperatures about 100 °C was developed for recovery of valuable metal and environmental protection. This process was used to treat flue dust containing arsenic and antimony and satisfactory results were obtained. Over 99% of arsenic and antimony were recovered, and high purity As2O3 and SbCl3 were produced. A metallic alcoholate technique was developed and proved to be of significant to the utilization of antimony resources. Using this technique, a number of antimony oxide powders were prepared, such as high purity and ultrafine Sb2O3, ultrafine Sb2O3-Sb2O5 and Sb2O3-SnO2 composite powders.
文摘CdTe films are prepared by closed-space sublimation technology. Dependence of film crystalline on substrate materials and substrate temperature is investigated. It is found that films exhibit higher crystallinity at substrate temperature higher than 400 ℃. And the CdTe films deposited on CdS films with higher crystallinity have bigger crystallite and higher uniformity. Treatment with CdCl 2 methanol solution promotes the crystallite growth of CdTe films during annealing.
基金Supported by China Petrochemical Corporation(X505012)
文摘The viscosities of pure water,the acetic acid+water binary system,and the p-xylene+acetic acid+ water ternary system at different concentrations were determined with a rolling-ball viscometer at temperatures from 313.15 to 473.15 K and pressures from 0.10 to 3.20 MPa.The viscosity data were fitted by a correlation equation for the estimation of the mixture viscosities.The average absolute deviations(AAD)of the correlation for binary and ternary systems are 2.48%and 1.77%,respectively.
基金Supported by the National Natural Science Foundation of China(No.21302199)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA11030404)+1 种基金the Project of“Engineering HighPerformance Microorganisms for Advanced Bio-Based Manufacturing”from the Chinese Academy of Sciences(No.KGZD-EW-606)the Guangzhou Science and Technology Plan Projects(No.201510010012)
文摘Genomic mining has identifi ed a novel microbial alkaline esterase from the Indian Ocean. This esterase was overexpressed in E. coli BL21(DE3) and further functionally characterized. Under optimal conditions(10 mmol/L substrate, p H 6.0, 2 h at 40 ℃), this esterase can hydrolyze racemic methyl mandelate to( R)-methyl mandelate with very high optical purity(e. e. 〉99%) and yield(nearly 90%). Interestingly, the stereoselectivity of this esterase is opposite to that of two previously reported lipases that can generate( S)-methyl mandelate through the hydrolysis of racemic methyl mandelate. No organic solvents or other additives were required to optimize the optical purity and production of the fi nal chiral product(R)-methyl mandelate, which can potentially simplify the production procedure of( R)-methyl mandelate catalyzed by esterase.
文摘We study the interaction between a single-mode quantized field and a quantum system composed of two qubits. We suppose that two qubits initially be prepared in the mixed and separable state, and study how entanglement between two qubits arises in the course of evolution according to the Jaynes-Cummings type interaction with nonclassical radiation field. We also investigate the relation between entanglement and purity of qubit subsystem. We show that different photon statistics have different effects on the dynamical behavior of the qubit subsystem. When the qubits are initially prepared in the maximally mixed and separable state, for coherent state field we cannot find entanglement between two qubits; for squeezed state field entanglement between two qubits exists in several short period of time; for even and odd coherent state fields of large photon number, the dynamical behavior of the entanglement between two qubits shows collapse and revival phenomenon. For odd coherent state field of small photon number, the entanglement with both qubits initially prepared in maximally mixed state can be stronger than that with both qubits initially prepared in pure states. For fields of small photon number, the entanglement strongly depends on the states they are initially prepared in. For coherent state field, and odd and even coherent state fields of large photon number, the entanglement only depends on the purity of the initial state of qubit subsystem. We also show that during the evolution the unentangled state may be purer than the entangled state, and the maximum degree of entanglement may not occur at the time when the qubit subsystem is in the purist state.
文摘This article discusses the variation of the knotted picture of the quantum pure state with the variation of the complex coefficients α and β. It is shown that there are three kinds of link that correspond to three different ranks of the matrix of covariance correlation tensor, i.e., the zero rank corresponds to trivial link, the rank one corresponds to the two-component link with two crossings, and the rank three corresponds to the two-component link with four crossings.
文摘A multi-heat pipe is a device for heat transmission. It is composed of a heating section, a cooling section and an adiabatic section. The heating and cooling sections are the same and both are connected by four circular parallel tubes. This experimental study is performed to investigate heat transfer performance of a multi-heat pipe in the vertical orientation using pure water and GO (graphene oxide)/water nanofluid. GO/water nanofluids were synthesized by the modified Hummers method with 0.05%, 0.1%, 0.15%, and 0.2% volume concentrations. The thermal performance has been investigated with varying heat flux in the range of 10-30 W and 100% fill charge ratio. Wall temperature, thermal resistance, and heat transfer coefficient of the heat pipe are measured and compared with those for the heat pipe using pure water. The experimental results show that the evaporator wall temperature with GO nanofluid is lower than that of the base fluid. Also, the heat pipe that charged with nanofluids showed lower thermal resistance compared with pure water. Heat transfer enhancement is caused by suspended nanoparticles and is pronounced with the increase in particle volume fraction.
基金Supported by the National Basic Research Program of China(2012CB720500)the National Natural Science Foundation of China(21276204,20936004)
文摘Purification processes are widely used in hydrogen networks of refineries to increase hydrogen reuse. In refineries, hydrogen purification techniques include hydrocarbon, hydrogen sulfide and CO removal units. In addition, light hydrocarbon recovery from the hydrogen source streams can also result in hydrogen purification. In order to simplify the superstructure and mathematical model of hydrogen network integration, the models of different purification processes are unified in this paper, including mass balance and the expressions for hydrogen recovery and impurity removal ratios, which are given for all the purification units in refineries. Based on the proposed unified model, a superstructure of hydrogen networks with purification processes is constructed.
基金Supported by the National Basic Research Program of China(2012CB720500)the National Natural Science Foundation of China(21276204)
文摘Introducing purifiers into hydrogen network can enhance the recovery and reuse of hydrogen in refineries, further reducing the consumption of fresh hydrogen. Based on previous graphical methods, this work proposes a simple and unified graphical method for integration of hydrogen networks with purification processes. Scenarios with different hydrogen concentrations of purified product can be analyzed by the unified procedure. As a result, the maximum hydrogen saved by purification reuse can he identified and the corresponding purification process can be optimized, The proposed method is easy and non-iterative, and it is valid to purification processes with any feed concentration. A conventional hydrogen network is analyzed to test the effectiveness of the proposed method.
文摘A novel purification process is involved to obtain the high purity[>99%(by mass)]dodecanedioic acid(DC_(12)).It involves a re-crystallization followed by molecular distillation from the crude product.The objective of this study is to investigate general conditions,feed rate,distilling temperature and vacuum,necessary for centrifugal distillation of DC_(12).Under the optimum conditions,distilling temperature 180℃,pressure 30 Pa and feed flow rate700 ml·h^(-1),the purity of DC_(12) in the residence reached 97.55%with a yield of 53.18%by the analysis of gas chromatography.Multiple-pass distillation made a considerable contribution by improving the purity to99.22%.Additionally,the effect of pretreatment(re-crystallization) on distillation process was revealed through a series of comparative experiments.
文摘The main focus of the present work is to investigate Critical Heat Flux (CHF) enhancement using CuO nanofluid relative to CHF of pure water. To estimate the effect of nanoparticles on the CHF, pool boiling CHF values were measured for various volume concentrations of CuO nanofluid and compared with pure water. CHF enhancement of 130% was recorded at 0.2 % by volume of CuO nano-fluids. Surface roughness of the heater surface exposed to three measured heating cycles indicated surface modifications at different volume concentrations of nanofluid. SEM image of the heater surface revealed porous layer build up, which is thought to be the reason for CHF enhancement.
文摘Blood flow model is recycled to study the influence of magnetic field and nanoparticles in tapered stenosed arteries. The metallic nanoparticles for the blood flow with water as base fluid are not explored so far. The representation for the blood flow is through an axially non-symmetrical but radially symmetric stenosis. Symmetry of the distribution of the wall shearing stress and resistive impedance and their growth with the deve- loping stenosis is another important feature of our analysis. Exact solutions have been evaluated for velocity, resistance impedance, wall shear stress and shearing stress at the stenosis throat. The graphical results of different types of tapered arteries (i.e. conver- ging tapering, diverging tapering, non-tapered artery) have been examined for different parameters of interest for pure water and Copper water (Cu-water).