The water purification function of natural wetland systems is widely recognized,but rarely studied or scientifically evaluated.Extensive studies have been carried out by various international wetland research communit...The water purification function of natural wetland systems is widely recognized,but rarely studied or scientifically evaluated.Extensive studies have been carried out by various international wetland research communities to quantify the water quality improvement ability of the natural wetlands,in order to maintain such ability and wetland ecological health.This study aims to evaluate the purification function of Zhalong Wetland in China for removing total nitrogen(TN) and phosphorus(TP),based on ex-situ experiments and the development of a combined water quantity-quality model.Experiments and model predictions were carried out with different input TP and TN concentrations.Statistical analyses demonstrated that the relative errors between model simulations and experimental observations for TN and TP were 8.6% and 12.4%,respectively.With water retention time being maintained at 90 d,the removal rate of these pollutants could not reach the required Grade V standards,if the inflow TN concentration was over 42 mg L-1,or the input TP concentration was over 14 mg L-1.The simulation results also demonstrated that,even with Grade V quality standard compliance,when the water inflow from surrounding industries and agriculture lands into Zhalong Wetland reaches 0.3×10 8 m 3 a-1,the maximum TN and TP loads that the reserve can cope with are 1.26×10 3 t a-1 and 0.42×10 3 t a-1,respectively.Overall,this study has produced a significant amount of information that can be used for the protection of water quality and ecological health of Zhalong Wetland.展开更多
基金Acknowledgment: This work was supported by the National Natural Science Foundation of China (No.21076204) and the Basic Research Foundation of Xi'an University of Architecture and Technology (No.JC1107).
文摘Acknowledgment: This work was supported by the National Natural Science Foundation of China (No.21076204) and the Basic Research Foundation
基金supported by the Knowledge Innovation Programs of Chinese Academy of Sciences (Grant No. KZCX2-YW-Q06-2)the National Basic Research Program of China ("973" Program) (Grant No.2010CB428404)
文摘The water purification function of natural wetland systems is widely recognized,but rarely studied or scientifically evaluated.Extensive studies have been carried out by various international wetland research communities to quantify the water quality improvement ability of the natural wetlands,in order to maintain such ability and wetland ecological health.This study aims to evaluate the purification function of Zhalong Wetland in China for removing total nitrogen(TN) and phosphorus(TP),based on ex-situ experiments and the development of a combined water quantity-quality model.Experiments and model predictions were carried out with different input TP and TN concentrations.Statistical analyses demonstrated that the relative errors between model simulations and experimental observations for TN and TP were 8.6% and 12.4%,respectively.With water retention time being maintained at 90 d,the removal rate of these pollutants could not reach the required Grade V standards,if the inflow TN concentration was over 42 mg L-1,or the input TP concentration was over 14 mg L-1.The simulation results also demonstrated that,even with Grade V quality standard compliance,when the water inflow from surrounding industries and agriculture lands into Zhalong Wetland reaches 0.3×10 8 m 3 a-1,the maximum TN and TP loads that the reserve can cope with are 1.26×10 3 t a-1 and 0.42×10 3 t a-1,respectively.Overall,this study has produced a significant amount of information that can be used for the protection of water quality and ecological health of Zhalong Wetland.