This paper presented a hybrid control scheme to vibration reduction of flexible spacecraft during rotational maneuver by using variable structure output feedback control (VSOFC) and piezoelectric materials. The cont...This paper presented a hybrid control scheme to vibration reduction of flexible spacecraft during rotational maneuver by using variable structure output feedback control (VSOFC) and piezoelectric materials. The control configuration included the attitude controller based on VSOFC method and vibration attenuator designed by constant-gain negative velocity feedback control. The attitude controller consisted of a linear feedback term and a discontinuous feedback term. With the presence of this attitude controller, an additional flexible control system acting on the flexible parts can be designed for vibration control. Compared with conventional proportional-derivative (PD) control, the developed control scheme guarantees not only the stability of the closed-loop system, but also yields better performance and robustness in the presence of parametric uncertainties and externai disturbance. Simulation results are presented for the spacecraft model to show the effectiveness of the proposed control techniques.展开更多
An impulse feedback control law to change the mean orbit elements of spacecraft around asteroid is presented. First, the mean orbit elements are transferred to the osculating orbit elements at the burning time. Then, ...An impulse feedback control law to change the mean orbit elements of spacecraft around asteroid is presented. First, the mean orbit elements are transferred to the osculating orbit elements at the burning time. Then, the feedback control law based on Gauss’s perturbation equations of motion is given. And the impulse control for targeting from the higher circulation orbit to the specified periapsis is developed. Finally, the numerical simulation is performed and the simulation results show that the presented impulse control law is effective.展开更多
This paper presents a new developed anthropomorphic robot dexterous hand: HIT/DLR Hand II. The hand is composed of an independent palm and five identical modular fingers, and each finger has three degree of freedom ...This paper presents a new developed anthropomorphic robot dexterous hand: HIT/DLR Hand II. The hand is composed of an independent palm and five identical modular fingers, and each finger has three degree of freedom (DOFs) and four joints. All the actuators and electronics are integrated in the finger body and the palm. Owing to using a new actuator, drivers and a novel arrangement, both the length and width of the finger is about two third of its formner version. By using the wire coupling mecha- nism, the distal phalanx transmission ratio is kept exactly 1 : 1 in the whole movement range. The packing mechanism which is implemented directly in the finger body and palm not only reduces the size of whole hand but also make it more anthropomorphic. Additionally, the new designed force/torque and position sensors are integrated in the hand for increasing muhisensory capability. To evaluate the performances of the finger mechanism, the position and impedance control experiments are conducted.展开更多
An adaptive variable structure control method based on backstepping is proposed for the attitude maneuver problem of rigid spacecraft with reaction wheel dynamics in the presence of uncertain inertia matrix and extern...An adaptive variable structure control method based on backstepping is proposed for the attitude maneuver problem of rigid spacecraft with reaction wheel dynamics in the presence of uncertain inertia matrix and external disturbances. The proposed control approach is a combination of the backstepping and the adaptive variable structure control. The cascaded structure of the attitude maneuver control system with reaction wheel dynamics gives the advantage for applying the backstepping method to construct Lyapunov functions. The robust stability to external disturbances and parametric uncertainty is guaranteed by the adaptive variable structure control. To validate the proposed control algorithm, numerical simulations using the proposed approach are performed for the attitude maneuver mission of rigid spacecraft with a configuration consisting of four reaction wheels for actuator and three magnetorquers for momentum unloading. Simulation results verify the effectiveness of the proposed control algorithm.展开更多
A generalized scheme based on the sliding mode and component synthesis vibration suppression (CSVS) method has been proposed for the rotational maneuver and vibration suppression of an orbiting spacecraft with flexibl...A generalized scheme based on the sliding mode and component synthesis vibration suppression (CSVS) method has been proposed for the rotational maneuver and vibration suppression of an orbiting spacecraft with flexible appendages. The proposed control design process is twofold: design of the attitude controller followed by the design of a flexible vibration attenuator. The attitude controller using only the attitude and the rate information for the flexible spacecraft (FS) is designed to serve two purposes: it forces the attitude motion onto a pre-selected sliding surface and then guides it to the state space origin. The shaped command input controller based on the CSVS method is designed for the reduction of the flexible mode vibration, which only requires information about the natural frequency and damping of the closed system. This information is used to discretize the input so that minimum energy is injected via the controller to the flexible modes of the spacecraft. Additionally, to extend the CSVS method to the system with the on-off actuators, the pulse-width pulse-frequency (PWPF) modulation is introduced to control the thruster firing and integrated with the CSVS method. PWPF modulation is a control method that provides pseudo-linear operation for an on-off thruster. The proposed control strategy has been implemented on a FS, which is a hub with symmetric cantilever flexible beam appendages and can undergo a single axis rotation. The results have been proven the potential of this technique to control FS.展开更多
In this paper, two formation controllers are developed under directed and undirected communication topology for six-degree-of-freedom (6-DOF) networked spacecraft flying in deep space. In the control algorithm, any ...In this paper, two formation controllers are developed under directed and undirected communication topology for six-degree-of-freedom (6-DOF) networked spacecraft flying in deep space. In the control algorithm, any explicit leader does not exist in the formation team and the proposed controller is required that each spacecraft communicates with its neighbors only, which avoids having to communicate each spacecraft's trajectory and therefore reduces the required communication loads of the whole formation. The proposed control strategy allows that each spacecraft can track its desired position and attitude and simultaneously the whole group moves to the desired formation and obtains its desired relative attitudes between spaceerafts. Simulation results demonstrate the effectiveness of the proposed controller.展开更多
To carry out the deep space exploration tasks near Sun-Earth Libration point L2, the CRTBP dynamic model was built up and the numerical conditional quasi-periodic orbit (Lissajons orbit) was computed near L2. Then, ...To carry out the deep space exploration tasks near Sun-Earth Libration point L2, the CRTBP dynamic model was built up and the numerical conditional quasi-periodic orbit (Lissajons orbit) was computed near L2. Then, a formation controller was designed with linear matrix inequality to overcome the difficuhy of parameter tuning. To meet the demands of formation accuracy and present thruster's capability, a threshold scheme was adopted for formation control. Finally, some numerical simulations and analysis were completed to demonstrate the feasibility of the proposed control strategy.展开更多
基金Sponsored by Program for Young Excellent Talents in Harbin Institute of Technology(Grant No.HITQNJS.2007.001)National Natural Science Founda-tion of China(Grant No.60674101)Research Fund for the Doctoral Program of Higher Education of China(Grant No.20050213010).
文摘This paper presented a hybrid control scheme to vibration reduction of flexible spacecraft during rotational maneuver by using variable structure output feedback control (VSOFC) and piezoelectric materials. The control configuration included the attitude controller based on VSOFC method and vibration attenuator designed by constant-gain negative velocity feedback control. The attitude controller consisted of a linear feedback term and a discontinuous feedback term. With the presence of this attitude controller, an additional flexible control system acting on the flexible parts can be designed for vibration control. Compared with conventional proportional-derivative (PD) control, the developed control scheme guarantees not only the stability of the closed-loop system, but also yields better performance and robustness in the presence of parametric uncertainties and externai disturbance. Simulation results are presented for the spacecraft model to show the effectiveness of the proposed control techniques.
文摘An impulse feedback control law to change the mean orbit elements of spacecraft around asteroid is presented. First, the mean orbit elements are transferred to the osculating orbit elements at the burning time. Then, the feedback control law based on Gauss’s perturbation equations of motion is given. And the impulse control for targeting from the higher circulation orbit to the specified periapsis is developed. Finally, the numerical simulation is performed and the simulation results show that the presented impulse control law is effective.
基金supported by the National High Technology Research and Development Programme of China(2006AA04Z255)the 111 Project(B307018)
文摘This paper presents a new developed anthropomorphic robot dexterous hand: HIT/DLR Hand II. The hand is composed of an independent palm and five identical modular fingers, and each finger has three degree of freedom (DOFs) and four joints. All the actuators and electronics are integrated in the finger body and the palm. Owing to using a new actuator, drivers and a novel arrangement, both the length and width of the finger is about two third of its formner version. By using the wire coupling mecha- nism, the distal phalanx transmission ratio is kept exactly 1 : 1 in the whole movement range. The packing mechanism which is implemented directly in the finger body and palm not only reduces the size of whole hand but also make it more anthropomorphic. Additionally, the new designed force/torque and position sensors are integrated in the hand for increasing muhisensory capability. To evaluate the performances of the finger mechanism, the position and impedance control experiments are conducted.
基金Sponsored by the National Natural Science Foundation of China(Grant No.60674101)the Research Fund for the Doctoral Program of Higher Educa-tion of China(Grant No.20050213010)
文摘An adaptive variable structure control method based on backstepping is proposed for the attitude maneuver problem of rigid spacecraft with reaction wheel dynamics in the presence of uncertain inertia matrix and external disturbances. The proposed control approach is a combination of the backstepping and the adaptive variable structure control. The cascaded structure of the attitude maneuver control system with reaction wheel dynamics gives the advantage for applying the backstepping method to construct Lyapunov functions. The robust stability to external disturbances and parametric uncertainty is guaranteed by the adaptive variable structure control. To validate the proposed control algorithm, numerical simulations using the proposed approach are performed for the attitude maneuver mission of rigid spacecraft with a configuration consisting of four reaction wheels for actuator and three magnetorquers for momentum unloading. Simulation results verify the effectiveness of the proposed control algorithm.
文摘A generalized scheme based on the sliding mode and component synthesis vibration suppression (CSVS) method has been proposed for the rotational maneuver and vibration suppression of an orbiting spacecraft with flexible appendages. The proposed control design process is twofold: design of the attitude controller followed by the design of a flexible vibration attenuator. The attitude controller using only the attitude and the rate information for the flexible spacecraft (FS) is designed to serve two purposes: it forces the attitude motion onto a pre-selected sliding surface and then guides it to the state space origin. The shaped command input controller based on the CSVS method is designed for the reduction of the flexible mode vibration, which only requires information about the natural frequency and damping of the closed system. This information is used to discretize the input so that minimum energy is injected via the controller to the flexible modes of the spacecraft. Additionally, to extend the CSVS method to the system with the on-off actuators, the pulse-width pulse-frequency (PWPF) modulation is introduced to control the thruster firing and integrated with the CSVS method. PWPF modulation is a control method that provides pseudo-linear operation for an on-off thruster. The proposed control strategy has been implemented on a FS, which is a hub with symmetric cantilever flexible beam appendages and can undergo a single axis rotation. The results have been proven the potential of this technique to control FS.
基金Supported by the National Natural Science Foundation of China (No. 10832004).
文摘In this paper, two formation controllers are developed under directed and undirected communication topology for six-degree-of-freedom (6-DOF) networked spacecraft flying in deep space. In the control algorithm, any explicit leader does not exist in the formation team and the proposed controller is required that each spacecraft communicates with its neighbors only, which avoids having to communicate each spacecraft's trajectory and therefore reduces the required communication loads of the whole formation. The proposed control strategy allows that each spacecraft can track its desired position and attitude and simultaneously the whole group moves to the desired formation and obtains its desired relative attitudes between spaceerafts. Simulation results demonstrate the effectiveness of the proposed controller.
文摘To carry out the deep space exploration tasks near Sun-Earth Libration point L2, the CRTBP dynamic model was built up and the numerical conditional quasi-periodic orbit (Lissajons orbit) was computed near L2. Then, a formation controller was designed with linear matrix inequality to overcome the difficuhy of parameter tuning. To meet the demands of formation accuracy and present thruster's capability, a threshold scheme was adopted for formation control. Finally, some numerical simulations and analysis were completed to demonstrate the feasibility of the proposed control strategy.