As valuable energy in iron-and steel-making process,by-product gas is widely used in heating and technical processes in steel plant.After being used according to the technical requirements,the surplus by-product gas i...As valuable energy in iron-and steel-making process,by-product gas is widely used in heating and technical processes in steel plant.After being used according to the technical requirements,the surplus by-product gas is usually used for buffer boilers to produce steam.With the rapid development of energy conservation technology and energy consumption level,surplus gas in steel plant continues to get larger.Therefore,it is significant to organize surplus gas among buffer boilers.A dynamic programming model of that issue was established in this work,considering the ramp rate constraint of boilers and the influences of setting gasholders.Then a case study was done.It is shown that dynamic programming dispatch gets more steam generation and less specific gas consumption compared with current proportionate dispatch depending on nominal capacities of boilers.The ignored boiler ramp rate constraint was considered and its contribution to the result validity was pointed out.Finally,the significance of setting gasholders was studied.展开更多
With the analysis on regulating system in 200 MW steam turbine, the necessity of appending the fast-opening function to the original system is set forth and a new type of fast-opening mechanism is devised. The mathema...With the analysis on regulating system in 200 MW steam turbine, the necessity of appending the fast-opening function to the original system is set forth and a new type of fast-opening mechanism is devised. The mathematical model of system is built up. With the use of AMESIM software, the displacement curve of the piston, the force curve of the cartridge valve spool, the pressure curve and the flux curve in the regulation process are obtained based on simulation. The performances of three fast-opening systems composed of cartridge valves with different diameters are compared. Based on the analysis on factors that affect the execution time of fast-opening, the dead zone of the fast-opening system is put forward. To overcome the defect, dif- ferent operation modes are adopted for different zones. The result shows that with the increase of the valve diameter, the regulating time in the dead zone significantly exceeds the fast-opening time in the whole journey. Accordingly, the optimization operation tactic in the dead zone and the qualification conditions are brought forward. The fast-opening system composed of 32 mm cartridge valves is taken as an example with use of the tactic. The simulation result shows that the maximum regulating time is shortened by 509 ms.展开更多
Three types of low-carbon vehicle technologies in China are reviewed. Potential effects are listed for those integrated energy-saving technologies for conventional vehicles. Low carbon transitions, including alternati...Three types of low-carbon vehicle technologies in China are reviewed. Potential effects are listed for those integrated energy-saving technologies for conventional vehicles. Low carbon transitions, including alternative vehicle power train systems and fuels, are discussed on their development status and trends, including life cycle primary fossil energy use and greenhouse gas emissions of each pathway. To further support the low-carbon vehicle technologies development, integrated policies should seek to: (1) employ those integrated energy-saving technologies, (2) apply hybrid electric technology, (3) commercialize electric vehicles through battery technology innovation, (4) support fuel cell vehicles and hydrogen technology R&D for future potential applications, (5) boost the R&D of second generation biofuel technology, and (6) conduct further research on applying low-carbon technologies including CO2 capture and storage technology to coal-based transportation solutions.展开更多
With the explosive growth and need for high-speed wireless communications, more and more energy is consumed to support the required quality of service. Therefore, energy efficient or green communication has become a v...With the explosive growth and need for high-speed wireless communications, more and more energy is consumed to support the required quality of service. Therefore, energy efficient or green communication has become a very hot topic under the ground of limited energy resource and environmentally friendly transmission schemes. MIMO technique is capable of reducing the transmission power thanks to its diversity and multiplexing gain. Moreover, antenna selection(AS) is an alternative to extract many of the benefits in MIMO systems with a reduced cost of complexity and power. Although many works including several survey papers have investigated AS in MIMO systems, the goal of these works is only the capacity maximization or error rate minimization, which fails to guarantee the optimality of the energy efficiency in MIMO systems. In this paper, we overview the state of the art in the AS schemes in energy efficient MIMO systems, the goal of which is to optimize the energy efficiency of the whole system. Specifically, we introduce energy efficient AS in point-to-point MIMO, cooperative MIMO, multiuser MIMO and largescale MIMO systems, respectively. Several challenging and practical issues in this area are also addressed.展开更多
We propose a method to improve positioning accuracy while reducing energy consumption in an indoor Wireless Local Area Network(WLAN) environment.First,we intelligently and jointly select the subset of Access Points(AP...We propose a method to improve positioning accuracy while reducing energy consumption in an indoor Wireless Local Area Network(WLAN) environment.First,we intelligently and jointly select the subset of Access Points(APs) used in positioning via Maximum Mutual Information(MMI) criterion.Second,we propose Orthogonal Locality Preserving Projection(OLPP) to reduce the redundancy among selected APs.OLPP effectively extracts the intrinsic location features in situations where previous linear signal projection techniques failed to do,while maintaining computational efficiency.Third,we show that the combination of AP selection and OLPP simultaneously exploits their complementary advantages while avoiding the drawbacks.Experimental results indicate that,compared with the widely used weighted K-nearest neighbor and maximum likelihood estimation method,the proposed method leads to 21.8%(0.49 m) positioning accuracy improvement,while decreasing the computation cost by 65.4%.展开更多
The paper studies the metallurgical energy saving standards system, indicates the current siltutinon of standards and proposes a plan for the further standardizalion work. so as to promote new energy saving technologi...The paper studies the metallurgical energy saving standards system, indicates the current siltutinon of standards and proposes a plan for the further standardizalion work. so as to promote new energy saving technologies and application of new process to boost energy eonservation and emission reduction.展开更多
This article take cold regions of nlral residential building envelope as the research object, suitability technical theory as the theoretical basis, we evaluation of rural residential energy envelope because China's ...This article take cold regions of nlral residential building envelope as the research object, suitability technical theory as the theoretical basis, we evaluation of rural residential energy envelope because China's rural areas is chmacterized by large regional differences and to find a solution for the envelope. It could be considered as the useful reference for retrofit design of similar projects.展开更多
The paper use advantage of local natural resources, greening and sufficient water resources, combine natural ecological environment design with rural architecture, and fully consider local economic base and material t...The paper use advantage of local natural resources, greening and sufficient water resources, combine natural ecological environment design with rural architecture, and fully consider local economic base and material technical conditions, and takes site selection and planning, architectural design technology as the two core aspects to study rural residential energy conservation, improving thermal environment of indoor residential that use of nature building energy saving technique, efforts to reduce the use of mechanical equipment system, thereby reducing the rural residential building energy consumption.展开更多
The day/night (diurnal) changes in temperature and solar radiation pose challenges for maintaining human thermal comfort in buildings. Passive and energy-conserving buildings seek to manage the available thermal ene...The day/night (diurnal) changes in temperature and solar radiation pose challenges for maintaining human thermal comfort in buildings. Passive and energy-conserving buildings seek to manage the available thermal energy by lowering peaks and dampening the fluctuations in order to maintain conditions for human comfort. Appropriate use of thermal mass moderates the internal temperatures by averaging diurnal extremes. Thermal mass is one of the powerful tools which architects and designers can use to control temperature. It can be used to optimize the performance of energy-conserving buildings that rely primarily on mechanical heating and cooling strategies. Massive building envelopes-such as masonry, concrete, earth, and insulating concrete forms (ICFs) can be utilized as one of the simplest ways of reducing building heating and cooling loads. This article analyses the role and effectiveness of thermal mass as a strategy for providing indoor thermal comfort for passive solar and energy conserving buildings.展开更多
To reduce energy consumption in cloud data centres,in this paper,we propose two algorithms called the Energy-aware Scheduling algorithm using Workload-aware Consolidation Technique(ESWCT) and the Energyaware Live Migr...To reduce energy consumption in cloud data centres,in this paper,we propose two algorithms called the Energy-aware Scheduling algorithm using Workload-aware Consolidation Technique(ESWCT) and the Energyaware Live Migration algorithm using Workload-aware Consolidation Technique(ELMWCT).As opposed to traditional energy-aware scheduling algorithms,which often focus on only one-dimensional resource,the two algorithms are based on the fact that multiple resources(such as CPU,memory and network bandwidth)are shared by users concurrently in cloud data centres and heterogeneous workloads have different resource consumption characteristics.Both algorithms investigate the problem of consolidating heterogeneous workloads.They try to execute all Virtual Machines(VMs) with the minimum amount of Physical Machines(PMs),and then power off unused physical servers to reduce power consumption.Simulation results show that both algorithms efficiently utilise the resources in cloud data centres,and the multidimensional resources have good balanced utilizations,which demonstrate their promising energy saving capability.展开更多
Building energy conservation is the basis for carbon emission reduction, through elaborating the relationship between low carbon and energy efficient building. It points out that the construction of energy-saving emis...Building energy conservation is the basis for carbon emission reduction, through elaborating the relationship between low carbon and energy efficient building. It points out that the construction of energy-saving emission reduction is an effective means to solve the problems of high energy consumption of the building, and it is also an important measure for China's carbon emission reduction. According to the climate characteristics in hot summer and cold winter area, low carbon technology suitable for the construction of energy-efficient hot summer and cold winter area is proposed which is based on the analysis of the current main building energy-saving technical measures.展开更多
CO2 (carbon dioxide) emission reduction, especially removal from coal-fired power plants has become the highest priority in measures to combat global warming. In China, coal-fired power is the main generating electr...CO2 (carbon dioxide) emission reduction, especially removal from coal-fired power plants has become the highest priority in measures to combat global warming. In China, coal-fired power is the main generating electricity style; more than 2,000 millions tons coal has been consumed in coal-fired power plants in China. In order to control CO2 emission, three technologies has been introduced, CCS (carbon capture and storage), oxy-combusion, and IGCC (integrated gasification combined cycle). CCS and IGCC technologies are expensive and need too many facilities; besides, there are some concrete problems need to resolve on the oxy-combustion technology. The energy saving work is the other pattern of CO2 emission control.展开更多
This paper summarizes the encrgy consumption of rail transit and the current situation of energy saving. Then it puts forward a number of policy support measures on the technology management from several aspects, such...This paper summarizes the encrgy consumption of rail transit and the current situation of energy saving. Then it puts forward a number of policy support measures on the technology management from several aspects, such as the raft line, traction power supply, energy-saving mode and so on The related research helps urban rail transit enterprises save energy consumption, reduce costs to improve their market competitiveness, as well as to promote the enterprises to fulfill social responsibility and carry out the sustainable development idea.展开更多
With the increase of mining depth, the temperature of the original rock in deep mines increases. High temperature heat hazards at working surfaces and driving faces are becoming increasingly more serious. Given the pr...With the increase of mining depth, the temperature of the original rock in deep mines increases. High temperature heat hazards at working surfaces and driving faces are becoming increasingly more serious. Given the problem of mine cooling technologies at China and abroad and the actual conditions of a coal mine, we developed HEMS (High Temperature Exchange Machinery System) with inrushing mine water as the source of cold energy. Combined with the characteristics of a shortage of inrushing water in the coal mine, we proposed the Sanhejian model of HEMS with its lack of a cold source. The cooling engineer- ing construction, given the present conditions in the Sanhejian Coal Mine, consisted of two phases. In phase 1 horizontal water circulation was used as cold energy, while phase II was the geothermal utiliza- tion project. For the key equipment of HEMS-PT or HEMS-T, we provided the operational principle from theory and an actual application. Finally, we analyzed the operational effect of HEMS. After cooling, the temperature at the working face was below 30 ~C, which meets the national regulations. This system opens up new technology to solve the problem of deep mine heat hazards, which makes good sense in energy conservation and pollution reduction, improves the environment and realizes sustainable eco- nomic development.展开更多
Considering that modern mobile terminals possess the capability to detect users' proximity,and offer means to directly communicate and share content with the people in close area,Device-to-Device(D2D) based Proxim...Considering that modern mobile terminals possess the capability to detect users' proximity,and offer means to directly communicate and share content with the people in close area,Device-to-Device(D2D) based Proximity Services(ProSe) have recently witnessed great development,which enable users to seek for and utilize relevant value in their physical proximity,and are capable to create numerous new mobile service opportunities.However,without a breakthrough in battery technology,the energy will be the biggest limitation for ProSe.Through incorporating the features of ProSe(D2D communication technologies,abundant built-in sensors,localization-dependent,and context-aware,etc.),this paper thoroughly investigates the energy-efficient architecture and technologies for ProSe from the following four aspects:underlying networking technology,localization,application and architecture features,context-aware and user interactions.Besides exploring specific energy-efficient schemes pertaining to each aspect,this paper offers a perspective for research and applications.In brief,through classifying,summarizing and optimizing the multiple efforts on studying,modeling and reducing energy consumption for ProSe on mobile devices,the paper would provide guide for developers to build energy-efficient ProSe.展开更多
基金Project(L2012082)supported by the Science and Technology Research Funds of Liaoning Provincial Education Department,China
文摘As valuable energy in iron-and steel-making process,by-product gas is widely used in heating and technical processes in steel plant.After being used according to the technical requirements,the surplus by-product gas is usually used for buffer boilers to produce steam.With the rapid development of energy conservation technology and energy consumption level,surplus gas in steel plant continues to get larger.Therefore,it is significant to organize surplus gas among buffer boilers.A dynamic programming model of that issue was established in this work,considering the ramp rate constraint of boilers and the influences of setting gasholders.Then a case study was done.It is shown that dynamic programming dispatch gets more steam generation and less specific gas consumption compared with current proportionate dispatch depending on nominal capacities of boilers.The ignored boiler ramp rate constraint was considered and its contribution to the result validity was pointed out.Finally,the significance of setting gasholders was studied.
基金Project (No. NCET-04-0545) supported by the "New Century Elitist Supporting Plan" Fund Project of Education Ministry of China
文摘With the analysis on regulating system in 200 MW steam turbine, the necessity of appending the fast-opening function to the original system is set forth and a new type of fast-opening mechanism is devised. The mathematical model of system is built up. With the use of AMESIM software, the displacement curve of the piston, the force curve of the cartridge valve spool, the pressure curve and the flux curve in the regulation process are obtained based on simulation. The performances of three fast-opening systems composed of cartridge valves with different diameters are compared. Based on the analysis on factors that affect the execution time of fast-opening, the dead zone of the fast-opening system is put forward. To overcome the defect, dif- ferent operation modes are adopted for different zones. The result shows that with the increase of the valve diameter, the regulating time in the dead zone significantly exceeds the fast-opening time in the whole journey. Accordingly, the optimization operation tactic in the dead zone and the qualification conditions are brought forward. The fast-opening system composed of 32 mm cartridge valves is taken as an example with use of the tactic. The simulation result shows that the maximum regulating time is shortened by 509 ms.
基金co-supported by the China National Social Science Foundation(09&ZD029)MOE Project of Key Research Institute of Humanities and Social Sciences at Universities in China (2009JJD790029)+1 种基金Doctoral Thesis Fund of Beijing Municipal Science and Technology Commission (zz200923)the CAERC program(Tsinghua/ GM/SAIC-China)
文摘Three types of low-carbon vehicle technologies in China are reviewed. Potential effects are listed for those integrated energy-saving technologies for conventional vehicles. Low carbon transitions, including alternative vehicle power train systems and fuels, are discussed on their development status and trends, including life cycle primary fossil energy use and greenhouse gas emissions of each pathway. To further support the low-carbon vehicle technologies development, integrated policies should seek to: (1) employ those integrated energy-saving technologies, (2) apply hybrid electric technology, (3) commercialize electric vehicles through battery technology innovation, (4) support fuel cell vehicles and hydrogen technology R&D for future potential applications, (5) boost the R&D of second generation biofuel technology, and (6) conduct further research on applying low-carbon technologies including CO2 capture and storage technology to coal-based transportation solutions.
基金supported by NSFC under grant No. 61322111 and No. 61401249the National Basic Research Program of China (973 Program) No. 2013CB336600+1 种基金Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP) under Grant No. 20130002120001Chuanxin Funding, and Beijing nova program No.Z121101002512051
文摘With the explosive growth and need for high-speed wireless communications, more and more energy is consumed to support the required quality of service. Therefore, energy efficient or green communication has become a very hot topic under the ground of limited energy resource and environmentally friendly transmission schemes. MIMO technique is capable of reducing the transmission power thanks to its diversity and multiplexing gain. Moreover, antenna selection(AS) is an alternative to extract many of the benefits in MIMO systems with a reduced cost of complexity and power. Although many works including several survey papers have investigated AS in MIMO systems, the goal of these works is only the capacity maximization or error rate minimization, which fails to guarantee the optimality of the energy efficiency in MIMO systems. In this paper, we overview the state of the art in the AS schemes in energy efficient MIMO systems, the goal of which is to optimize the energy efficiency of the whole system. Specifically, we introduce energy efficient AS in point-to-point MIMO, cooperative MIMO, multiuser MIMO and largescale MIMO systems, respectively. Several challenging and practical issues in this area are also addressed.
基金the High-Tech Research and Development Program of China,the National Seience Foundation for Young Scientists of China,the China Postdoctoral Science Foundation funded project
文摘We propose a method to improve positioning accuracy while reducing energy consumption in an indoor Wireless Local Area Network(WLAN) environment.First,we intelligently and jointly select the subset of Access Points(APs) used in positioning via Maximum Mutual Information(MMI) criterion.Second,we propose Orthogonal Locality Preserving Projection(OLPP) to reduce the redundancy among selected APs.OLPP effectively extracts the intrinsic location features in situations where previous linear signal projection techniques failed to do,while maintaining computational efficiency.Third,we show that the combination of AP selection and OLPP simultaneously exploits their complementary advantages while avoiding the drawbacks.Experimental results indicate that,compared with the widely used weighted K-nearest neighbor and maximum likelihood estimation method,the proposed method leads to 21.8%(0.49 m) positioning accuracy improvement,while decreasing the computation cost by 65.4%.
文摘The paper studies the metallurgical energy saving standards system, indicates the current siltutinon of standards and proposes a plan for the further standardizalion work. so as to promote new energy saving technologies and application of new process to boost energy eonservation and emission reduction.
文摘This article take cold regions of nlral residential building envelope as the research object, suitability technical theory as the theoretical basis, we evaluation of rural residential energy envelope because China's rural areas is chmacterized by large regional differences and to find a solution for the envelope. It could be considered as the useful reference for retrofit design of similar projects.
文摘The paper use advantage of local natural resources, greening and sufficient water resources, combine natural ecological environment design with rural architecture, and fully consider local economic base and material technical conditions, and takes site selection and planning, architectural design technology as the two core aspects to study rural residential energy conservation, improving thermal environment of indoor residential that use of nature building energy saving technique, efforts to reduce the use of mechanical equipment system, thereby reducing the rural residential building energy consumption.
文摘The day/night (diurnal) changes in temperature and solar radiation pose challenges for maintaining human thermal comfort in buildings. Passive and energy-conserving buildings seek to manage the available thermal energy by lowering peaks and dampening the fluctuations in order to maintain conditions for human comfort. Appropriate use of thermal mass moderates the internal temperatures by averaging diurnal extremes. Thermal mass is one of the powerful tools which architects and designers can use to control temperature. It can be used to optimize the performance of energy-conserving buildings that rely primarily on mechanical heating and cooling strategies. Massive building envelopes-such as masonry, concrete, earth, and insulating concrete forms (ICFs) can be utilized as one of the simplest ways of reducing building heating and cooling loads. This article analyses the role and effectiveness of thermal mass as a strategy for providing indoor thermal comfort for passive solar and energy conserving buildings.
基金supported by the Opening Project of State key Laboratory of Networking and Switching Technology under Grant No.SKLNST-2010-1-03the National Natural Science Foundation of China under Grants No.U1333113,No.61303204+1 种基金the Sichuan Province seedling project under Grant No.2012ZZ036the Scientific Research Fund of Sichuan Normal University under Grant No.13KYL06
文摘To reduce energy consumption in cloud data centres,in this paper,we propose two algorithms called the Energy-aware Scheduling algorithm using Workload-aware Consolidation Technique(ESWCT) and the Energyaware Live Migration algorithm using Workload-aware Consolidation Technique(ELMWCT).As opposed to traditional energy-aware scheduling algorithms,which often focus on only one-dimensional resource,the two algorithms are based on the fact that multiple resources(such as CPU,memory and network bandwidth)are shared by users concurrently in cloud data centres and heterogeneous workloads have different resource consumption characteristics.Both algorithms investigate the problem of consolidating heterogeneous workloads.They try to execute all Virtual Machines(VMs) with the minimum amount of Physical Machines(PMs),and then power off unused physical servers to reduce power consumption.Simulation results show that both algorithms efficiently utilise the resources in cloud data centres,and the multidimensional resources have good balanced utilizations,which demonstrate their promising energy saving capability.
文摘Building energy conservation is the basis for carbon emission reduction, through elaborating the relationship between low carbon and energy efficient building. It points out that the construction of energy-saving emission reduction is an effective means to solve the problems of high energy consumption of the building, and it is also an important measure for China's carbon emission reduction. According to the climate characteristics in hot summer and cold winter area, low carbon technology suitable for the construction of energy-efficient hot summer and cold winter area is proposed which is based on the analysis of the current main building energy-saving technical measures.
文摘CO2 (carbon dioxide) emission reduction, especially removal from coal-fired power plants has become the highest priority in measures to combat global warming. In China, coal-fired power is the main generating electricity style; more than 2,000 millions tons coal has been consumed in coal-fired power plants in China. In order to control CO2 emission, three technologies has been introduced, CCS (carbon capture and storage), oxy-combusion, and IGCC (integrated gasification combined cycle). CCS and IGCC technologies are expensive and need too many facilities; besides, there are some concrete problems need to resolve on the oxy-combustion technology. The energy saving work is the other pattern of CO2 emission control.
文摘This paper summarizes the encrgy consumption of rail transit and the current situation of energy saving. Then it puts forward a number of policy support measures on the technology management from several aspects, such as the raft line, traction power supply, energy-saving mode and so on The related research helps urban rail transit enterprises save energy consumption, reduce costs to improve their market competitiveness, as well as to promote the enterprises to fulfill social responsibility and carry out the sustainable development idea.
基金Financial support for this project, provided by the Key Basic Research Program of China (No.2006CB202200)the National Major Project of Ministry of Education (No.304005)the Program for Changjiang Scholars and Innovative Research Team in University of China (No.IRT0656)
文摘With the increase of mining depth, the temperature of the original rock in deep mines increases. High temperature heat hazards at working surfaces and driving faces are becoming increasingly more serious. Given the problem of mine cooling technologies at China and abroad and the actual conditions of a coal mine, we developed HEMS (High Temperature Exchange Machinery System) with inrushing mine water as the source of cold energy. Combined with the characteristics of a shortage of inrushing water in the coal mine, we proposed the Sanhejian model of HEMS with its lack of a cold source. The cooling engineer- ing construction, given the present conditions in the Sanhejian Coal Mine, consisted of two phases. In phase 1 horizontal water circulation was used as cold energy, while phase II was the geothermal utiliza- tion project. For the key equipment of HEMS-PT or HEMS-T, we provided the operational principle from theory and an actual application. Finally, we analyzed the operational effect of HEMS. After cooling, the temperature at the working face was below 30 ~C, which meets the national regulations. This system opens up new technology to solve the problem of deep mine heat hazards, which makes good sense in energy conservation and pollution reduction, improves the environment and realizes sustainable eco- nomic development.
基金supported by the National Natural Science Foundation of China under Grant 61171092the JiangSu Educational Bureau Project under Grant 14KJA510004Prospective Research Project on Future Networks(JiangSu Future Networks Innovation Institute)
文摘Considering that modern mobile terminals possess the capability to detect users' proximity,and offer means to directly communicate and share content with the people in close area,Device-to-Device(D2D) based Proximity Services(ProSe) have recently witnessed great development,which enable users to seek for and utilize relevant value in their physical proximity,and are capable to create numerous new mobile service opportunities.However,without a breakthrough in battery technology,the energy will be the biggest limitation for ProSe.Through incorporating the features of ProSe(D2D communication technologies,abundant built-in sensors,localization-dependent,and context-aware,etc.),this paper thoroughly investigates the energy-efficient architecture and technologies for ProSe from the following four aspects:underlying networking technology,localization,application and architecture features,context-aware and user interactions.Besides exploring specific energy-efficient schemes pertaining to each aspect,this paper offers a perspective for research and applications.In brief,through classifying,summarizing and optimizing the multiple efforts on studying,modeling and reducing energy consumption for ProSe on mobile devices,the paper would provide guide for developers to build energy-efficient ProSe.