The fish Sinocyclocheilus grahami is one of the indicative and endemic species in the Dianchi Lake ecosystem. As a result of pollution and invasion of exotic fishes, the fish had disappeared from Dianchi Lake since 19...The fish Sinocyclocheilus grahami is one of the indicative and endemic species in the Dianchi Lake ecosystem. As a result of pollution and invasion of exotic fishes, the fish had disappeared from Dianchi Lake since 1986 and only a few small populations survive in springs and streams around the lake. Due to the endangered status and special scientific value, S.grahami was listed as the second class protective animal of China in 1989. The importance of S. grahami and the indigenous biodiversity of Dianchi Lake were recognized by the Global Environment Foundation (GEF) /World Bank and Yunnan Development & Reform Committee. Therefore a special grant was set up to restore and conserve the indigenous biodiversity of Dianchi Lake. The artificial breeding of S. grahami is a part of the targeted activities. Two successful breeding experiments were achieved using five females plus six males up to early March 2007. Approximately 1600 eggs were collected, of which 1320 eggs fertilized using the dry-fertilizing method. The mean fertilization rate was 73%. Approximately 480 fish fry was hatched and the mean hatching rate was 36%. After 10 days of cultivation, 95% fingerlings survived and their body lengths were up to 8- 12 mm. The importance of the artificial breeding success of S. grahami could be summarized as following: effectively protecting the fish from extinction; releasing the fish fry back to appropriate water body of the lake could help to restore the indigenous biodiversity of Dianchi Lake; facilitating the shift of local fish cultivation from the present non-indigenous to the future indigenous fishery.展开更多
An objectifying system for color inspections of traditional Chinese medicine (CITCM) is developed. The entire system includes two parts : The hardware and the software. The hardware is an image acquiring device und...An objectifying system for color inspections of traditional Chinese medicine (CITCM) is developed. The entire system includes two parts : The hardware and the software. The hardware is an image acquiring device under a standard lighting condition, and it mainly includes a xenon lamp with color temperature of 5 500 K as light source, an integrating sphere used for diffusing light and a high resolution CCD camera. The software is used for digital image processing, and the procedure is divided into three steps. Firstly the skin/non-skin classifi- cation is performed by utilizing the threshold in chrominance channels of the RGB color space. Secondly, the fa- cial features are localized by using the image segmentation and coordinates sorting. Finally, the facial special re- gion(SR) corresponding to five internal organs is achieved by utilizing masks designed to take advantage of mor- phology. Subsequently, the chromaticity is calculated. The system is tested by taking 83 samples of 30 young and 53 elderly people. The experiment shows that there is significant difference of all SRs between the young and the elderly, and the system has better performance for objectifying research of CITCM.展开更多
文摘The fish Sinocyclocheilus grahami is one of the indicative and endemic species in the Dianchi Lake ecosystem. As a result of pollution and invasion of exotic fishes, the fish had disappeared from Dianchi Lake since 1986 and only a few small populations survive in springs and streams around the lake. Due to the endangered status and special scientific value, S.grahami was listed as the second class protective animal of China in 1989. The importance of S. grahami and the indigenous biodiversity of Dianchi Lake were recognized by the Global Environment Foundation (GEF) /World Bank and Yunnan Development & Reform Committee. Therefore a special grant was set up to restore and conserve the indigenous biodiversity of Dianchi Lake. The artificial breeding of S. grahami is a part of the targeted activities. Two successful breeding experiments were achieved using five females plus six males up to early March 2007. Approximately 1600 eggs were collected, of which 1320 eggs fertilized using the dry-fertilizing method. The mean fertilization rate was 73%. Approximately 480 fish fry was hatched and the mean hatching rate was 36%. After 10 days of cultivation, 95% fingerlings survived and their body lengths were up to 8- 12 mm. The importance of the artificial breeding success of S. grahami could be summarized as following: effectively protecting the fish from extinction; releasing the fish fry back to appropriate water body of the lake could help to restore the indigenous biodiversity of Dianchi Lake; facilitating the shift of local fish cultivation from the present non-indigenous to the future indigenous fishery.
基金Supported by the Innovation Team Fund of Nanjing University of Aeronautics and Astronauticsthe Chinese Medical Association Research Project(S10)~~
文摘An objectifying system for color inspections of traditional Chinese medicine (CITCM) is developed. The entire system includes two parts : The hardware and the software. The hardware is an image acquiring device under a standard lighting condition, and it mainly includes a xenon lamp with color temperature of 5 500 K as light source, an integrating sphere used for diffusing light and a high resolution CCD camera. The software is used for digital image processing, and the procedure is divided into three steps. Firstly the skin/non-skin classifi- cation is performed by utilizing the threshold in chrominance channels of the RGB color space. Secondly, the fa- cial features are localized by using the image segmentation and coordinates sorting. Finally, the facial special re- gion(SR) corresponding to five internal organs is achieved by utilizing masks designed to take advantage of mor- phology. Subsequently, the chromaticity is calculated. The system is tested by taking 83 samples of 30 young and 53 elderly people. The experiment shows that there is significant difference of all SRs between the young and the elderly, and the system has better performance for objectifying research of CITCM.