Roads are conspicuous components in a river landscape;however,their impacts on river landscape patterns and ecological processes have not been systematically studied at the watershed scale.In this paper,the Lancang Ri...Roads are conspicuous components in a river landscape;however,their impacts on river landscape patterns and ecological processes have not been systematically studied at the watershed scale.In this paper,the Lancang River Valley in Yunnan Province,China was selected as a case to study road lateral disconnection and crossing impacts and identify river-road network interaction.This study was primarily focused on the road impacts on soil erosion intensity and patch density by using GIS analysis at different scales and explored their distribution with terrain factors.The results showed that river density revealed spatial autocorrelation although both of the roads and rivers were distributed unevenly in the valley.The lateral road(road curvature≥1.1)proportion correlated with soil erosion intensity(p 0.01)at the small sub-basin scale.Soil erosion intensity decreased with increasing lateral road buffer width.Light erosion generally accounted for a large proportion of the erosion in the lateral road buffer zones(1.0–4.0 km),while higher class lateral roads imposed greater impacts on soil erosion than lower class roads,which primarily had a moderate erosion level.In addition,the results of road-river intersection density indicated that road crossing impacts were significantly correlated with patch density at the small sub-basin scale.Topography factor(percent of slope>25°in each sub-basin had a close relationship with the ratio of total length of road line with curvature value≥1.1 to the total number of intersections.The correlation(p 0.01)between road impacts and terrain factor revealed that topography affected the road impact distribution in the Lancang River Valley.展开更多
Cloud vertical structures and precipitation over the Tibetan Plateau (TP) are analyzed and compared with its neighboring land and tropical oceans based on CloudSat/CALIPSO satellite measurements and TRMM precipitati...Cloud vertical structures and precipitation over the Tibetan Plateau (TP) are analyzed and compared with its neighboring land and tropical oceans based on CloudSat/CALIPSO satellite measurements and TRMM precipitation data. Results show that the TP generally has a compression effect on cloud systems, as manifested by a shrinking cloud depth and lowering cloud top. Precipitation is weaker over the TP than its neighboring regions and exhibits large seasonal variations. In summer, cloud ice particles over the TP are mostly located at lower altitude (5-10 km), with a larger variability of sizes and aggregation (particle number concentration) under no-rain conditions compared to other regions. Ice water content becomes abundant and the number concentration tends to be dense at higher altitudes when precipitation is enhanced. However, even for heavy rainstorms, the aggregation is most likely between 100 and 250 L-1, whereas it can reach as high as 500 L-1 over its neighboring land and tropical oceans. Given the same magnitude of precipitation, the spectrum of ice particle sizes is found to be wider over the TP than other regions.展开更多
Based on Droplet Measurement Technologies data of a pre-stratiform-cloud precipitation event in Ganzhou, Jiangxi Province, on 11 November 2015, and combined with radar data, this paper comprehensively analyzes the mac...Based on Droplet Measurement Technologies data of a pre-stratiform-cloud precipitation event in Ganzhou, Jiangxi Province, on 11 November 2015, and combined with radar data, this paper comprehensively analyzes the macro-and microphysical characteristics of cloud in the upper trough.The results show that:(1) Detection takes place in the early stage of precipitation and the cloud has multiple layers. The cloud type is stratiform(Sc) and the height of the cloud base is 1009 m, 1009–1700 m is the low Sc layer, 1700–3000 m is the no-cloud level, and 3000 to the maximum height detected is another Sc layer.(2) The Sc is inhomogeneous in the horizontal and vertical directions.The particle number concentration and the effective diameter below the 0 °C layer is significantly higher than that above the 0 °C layer, which is in accordance with the ‘seeder–feeder' mechanism.Above the 0 °C layer is seeder cloud, where needle, column ice crystals and water droplets coexist,and sublimation and coalescence are the main processes. The morphology of ice crystals changes from needle to column, plate, and polymer as height decreases. Below the 0 °C warm layer is a supply cloud, and the particles develop in the supply cloud with abundant liquid water content. Ice melting and coalescence dominate the warm layer, which makes the effective diameter significantly increase. Down to 4150 m, the ice melts completely into raindrops.展开更多
Accurate observation of clouds is challenging because of the high variability and complexity of cloud types and occurrences.By using the long-term cloud data collected during the ARM program at the Southern Great Plai...Accurate observation of clouds is challenging because of the high variability and complexity of cloud types and occurrences.By using the long-term cloud data collected during the ARM program at the Southern Great Plains central facility during 2001-2010,the consistencies and differences in the macrophysical properties of clouds between radiosonde and ground-based active remote sensing are quantitatively evaluated according to six cloud types:low;mid-low(ML);high-midlow;mid;high-mid(HM);and high.A similar variability trend is exhibited by the radiosonde and surface observations for the cloud fractions of the six cloud types.However,the magnitudes of the differences between the two methods are different among the six cloud types,with the largest difference seen in the high clouds.The distribution of the cloud-base height of the ML,mid,and HM clouds agrees in both methods,whereas large differences are seen in the cloud-top height for the ML and high clouds.The cloud thickness variations generally agree between the two datasets for the six cloud types.展开更多
The cloud-detection procedure developed by McNally and Watts(MW03) was added to the Weather Research and Forecasting Data Assimilation System. To provide some guidelines for setting up cloud-detection schemes, this st...The cloud-detection procedure developed by McNally and Watts(MW03) was added to the Weather Research and Forecasting Data Assimilation System. To provide some guidelines for setting up cloud-detection schemes, this study compares the MW03 scheme to the Multivariate and Minimum Residual(MMR) scheme for both simulated and real Advanced Infrared Sounder(AIRS) radiances. Results show that there is a high level of consistency between the results from simulated and real AIRS data. As expected, both cloud-detection schemes perform well in finding the cloud-contaminated channels based on the channels' peak levels. The clouddetection results from MW03 are sensitive to the prescribed brightness temperature innovation threshold and brightness temperature gradient threshold. When increasing the brightness temperature innovation threshold for MW03 to roughly eight times the default threshold, the two cloud-detection schemes produce consistent data rejection distributions overall for high channels. MMR generally retains more data for long-wave channels. For both cloud-detection schemes, there is a high level of consistency between the cloud-free pixels and the visible/near-IR(Vis/NIR) cloud mask.展开更多
Different image processing algorithms have been evaluated in the context of geological mapping using Landsat TM data. False color composites, the principal component imagery, and IHS decorrelation stretching method fo...Different image processing algorithms have been evaluated in the context of geological mapping using Landsat TM data. False color composites, the principal component imagery, and IHS decorrelation stretching method for Landsat-5 TM data have been found useful for delineating the regional geological features, mainly to provide the maximum geological information of the studied area . The study testifies that using which image processing yields best results for geological mapping in arid and semiarid regions by preserving morphological and spectral information. Generally, the studied area can be divided into three main geological units: Basaltic intrusive rocks, Metamorphic with varying intensities and Sedimentary rocks.展开更多
The microphysical "three-layer" model for stratiform clouds over a midlatitude location in Northwest China is investigated by combining in situ airborne Particle Measuring Systems, Inc. (PMS), radar measurem...The microphysical "three-layer" model for stratiform clouds over a midlatitude location in Northwest China is investigated by combining in situ airborne Particle Measuring Systems, Inc. (PMS), radar measurements, and the NCAR/Penn State Mesoscale Model Version 5 (MM5) simulation with a two-moment microphysics scheme. The coexistence of measured supercooled liquid water and small ice particles produces snow particles below the cloud top in the second layer. Peak number concentration and mean diameter of cloud water and raindrop appear in the third warm layer. A thin dry layer just below the melting layer is also observed. The predicted precipitation is tested by equitable threat score. The melting layer is clearly defined in the radar image and model radar reflectivity output is agreement with the observations. The model results provide features of the microphysical structure for every layer of "three-layer" model at Yan'an station. For both observation and model simulation, the "three-layer" model explains the stratiform precipitation formation completely and comprehensively.展开更多
Arctic clouds strongly influence the regional radiation balance, temperature, melting of sea ice, and freezing of sea water. Despite their importance, there is a lack of systematic and reliabie observations of Arctic ...Arctic clouds strongly influence the regional radiation balance, temperature, melting of sea ice, and freezing of sea water. Despite their importance, there is a lack of systematic and reliabie observations of Arctic clouds. The CloudSat satellite launched in 2006 with a 94GHz Cloud Profiling Radar (CPR) may contribute to close this gap. Here we compare one of the key parameters, the cloud liquid water path (LWP) retrieved from CloudSat observations and from microwave radiometer (MWR) data taken during the ASCOS (Arctic Summer Cloud Ocean Study) cruise of the research vessel Oden from August to September 2008. Over the 45 days of the ASCOS cruise, collocations closer than 3 h and 100 km were found in only 9 d, and collocations closer than 1 h and 30 km in only 2 d. The poor correlations in the scatter plots of the two LWP retrievals can be explained by the patchiness of the cloud cover in these two days (August 5th and September 7th), as confirmed by coincident MODIS (Moderate-resolution Imaging Spectroradiome- ter) images. The averages of Oden-observed LWP values are systematically higher (40-70 g m-2) than the corresponding CloudSat observations (0-50 g m2). These are cases of generally low LWP with presumably small droplets, and may be explained by the little sensitivity of the CPR to small droplets or by the surface clutter.展开更多
Based on cloud-probe data and airborne Ka-band cloud radar data collected in Baoding on 5 August 2018,the microphysical structural characteristics of cumulus(Cu)cloud at the precipitation stage were investigated.The c...Based on cloud-probe data and airborne Ka-band cloud radar data collected in Baoding on 5 August 2018,the microphysical structural characteristics of cumulus(Cu)cloud at the precipitation stage were investigated.The cloud droplets in the Cu cloud were found to be significantly larger than those in stratiform(STF)cloud.In the Cu cloud,most cloud particles were between 7 and 10μm in diameter,while in the STF cloud the majority of cloud particles grew no larger than 2μm.The sensitivity of cloud properties to aerosols varied with height.The cloud droplet effective radius showed a negative relationship with the aerosol number concentration(Na)in the cloud planetary boundary layer(PBL)and upper layer above the PBL.However,the cloud droplet concentration(Nc)varied little with decreased Na in the high liquid water content region above 1500 m.High Na values of between 300 and 1853 cm-3 were found in the PBL,and the maximum Na was sampled near the surface in August in the Hebei region,which was lower than that in autumn and winter.High radar reflectivity corresponded to large FCDP(fast cloud droplet probe)particle concentrations and small aerosol particle concentrations,and vice versa for low radar reflectivity.Strong updrafts in the Cu cloud increased the peak radius and Nc,and broadened cloud droplet spectrum;lower air temperature was favorable for particle condensational growth and produced larger droplets.展开更多
One of the biggest factors to deteriorate the satellite product quality is cloud coverage. Therefore, cloud masking process is important to improve the quality of various satellite products. However, satellite-based c...One of the biggest factors to deteriorate the satellite product quality is cloud coverage. Therefore, cloud masking process is important to improve the quality of various satellite products. However, satellite-based cloud discrimination algorithm has been developing and efficient ground-based cloud observations are necessary to validate satellite-based cloud discrimination. The purpose of this study is to develop the efficient ground-based cloud observation methodology using whole sky camera. This paper deals with methods how to discriminate cloud portions on whole sky image, how to apply the ground-based cloud observation to the validations for satellite products. For the cloud discrimination on whole sky image, we propose SI (sky index) and BI (brightness index) calculated from RGB (red, green and blue) channels. SI shows the extent of the blueness and gray scale and BI indicates the extent of the brightness. Sun, cloud and blue sky portions are divided by SI and BI threshold. As an application of ground-based cloud observation for the validation of satellite products, clouds portions discriminated from whole sky image are projected onto ground surface with map coordinate. We also examine to compare with cloud portions on whole sky images and MODIS (MODerate resolution Imaging Spectroradiometer) image as one of experiments. The proposed ground-based cloud observation method and its extension to satellite-based cloud discrimination should be connected to improve the quality of satellite products.展开更多
Located in an earthquake-prone region,the geological structures in Yunnan Province are complex. Taking into account that Tonghai county is located in the intersection of Xiaojiang fault and Honghe fault, an ACF-4M ELF...Located in an earthquake-prone region,the geological structures in Yunnan Province are complex. Taking into account that Tonghai county is located in the intersection of Xiaojiang fault and Honghe fault, an ACF-4M ELF electromagnetic instrument was installed at the Tonghai seismic station,which has produced continuous reliable data. The author collected the data and information for the year 2009 and 2010,and performed analysis on the variation characteristics of both geomagnetic fields and electrical resistivity. The result shows that the 1Hz and 39Hz electromagnetic power spectra are 0. 2 to 1. 4 orders of magnitude higher than the normal values immediately before many earthquakes. The anomalies are represented by the abrupt changes of the electric and magnetic field power spectra in earthquake and aftershock sequences,and the amplitude of change is related to the size of earthquake magnitude and epicentral distance. The electrical resistivity also obviously changes. Therefore, further research on the anomalous characteristics of ELF electromagnetic data will be meaningful to the future use of this instrument in earthquake prediction.展开更多
The upward lightning(UL) initiated from the top of tall buildings(at least above 100 m) is a type of atmospheric discharge. Currently, we understand the nature of the UL from ground observations, but the corresponding...The upward lightning(UL) initiated from the top of tall buildings(at least above 100 m) is a type of atmospheric discharge. Currently, we understand the nature of the UL from ground observations, but the corresponding theoretical research is lacking. Based on an existing bidirectional leader stochastic model, a stochastic parameterization scheme for the UL has been built and embedded in an existing two-dimensional thundercloud charge/discharge model. The ULs simulated from the experiments with two-dimensional high resolution agree generally with the observation results. By analyzing the charge structure of thunderstorm clouds, we determined the in-cloud environmental characteristics that favor the initiation of conventional cloud-to-ground(CG) flashes and analyzed the differences and similarities of some characteristics of the positive and the negative UL. Simulation results indicate that the positive ULs are typically other-lightning-triggered ULs(OLTUL) and are usually a discharge phenomenon between the ground and the lower positive charge region appearing below the main middle negative charge region. The effect of the previous in-cloud lightning(IC) process of space electrical field provides favorable conditions for the initiation of a positive UL. Its entire discharge process is limited, and the branches of the leader are fewer in number as its discharge is not sufficient. A negative UL is generally a discharge phenomenon of the dipole charge structure between the ground and the main negative charge region. The lower temperature stratification and the sinking of the hydrometeors typically initiate a negative UL. Negative ULs develop strongly and have more branches. The OLTUL is initiated mainly during the development stage of a thunderstorm, while the self-triggered UL(STUL) is initiated mainly during the dissipation stage of a thunderstorm.展开更多
基金Under the auspices of Nonprofit Environment Protection Specific Project of China(No.201209029-4)National Natural Science Foundation of China(No.50939001)
文摘Roads are conspicuous components in a river landscape;however,their impacts on river landscape patterns and ecological processes have not been systematically studied at the watershed scale.In this paper,the Lancang River Valley in Yunnan Province,China was selected as a case to study road lateral disconnection and crossing impacts and identify river-road network interaction.This study was primarily focused on the road impacts on soil erosion intensity and patch density by using GIS analysis at different scales and explored their distribution with terrain factors.The results showed that river density revealed spatial autocorrelation although both of the roads and rivers were distributed unevenly in the valley.The lateral road(road curvature≥1.1)proportion correlated with soil erosion intensity(p 0.01)at the small sub-basin scale.Soil erosion intensity decreased with increasing lateral road buffer width.Light erosion generally accounted for a large proportion of the erosion in the lateral road buffer zones(1.0–4.0 km),while higher class lateral roads imposed greater impacts on soil erosion than lower class roads,which primarily had a moderate erosion level.In addition,the results of road-river intersection density indicated that road crossing impacts were significantly correlated with patch density at the small sub-basin scale.Topography factor(percent of slope>25°in each sub-basin had a close relationship with the ratio of total length of road line with curvature value≥1.1 to the total number of intersections.The correlation(p 0.01)between road impacts and terrain factor revealed that topography affected the road impact distribution in the Lancang River Valley.
基金jointly supported by the National Natural Science Foundation of China[grant number 91637312],[grant number 91437219]the Key Research Program of Frontier Sciences of CAS,the Third Tibetan Plateau Scientific Experiment[grant number GYHY201406001]+1 种基金the Science and Technology Development Project of Shanghai Meteorological Bureau[grant number QM201711]the Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund(second phase)
文摘Cloud vertical structures and precipitation over the Tibetan Plateau (TP) are analyzed and compared with its neighboring land and tropical oceans based on CloudSat/CALIPSO satellite measurements and TRMM precipitation data. Results show that the TP generally has a compression effect on cloud systems, as manifested by a shrinking cloud depth and lowering cloud top. Precipitation is weaker over the TP than its neighboring regions and exhibits large seasonal variations. In summer, cloud ice particles over the TP are mostly located at lower altitude (5-10 km), with a larger variability of sizes and aggregation (particle number concentration) under no-rain conditions compared to other regions. Ice water content becomes abundant and the number concentration tends to be dense at higher altitudes when precipitation is enhanced. However, even for heavy rainstorms, the aggregation is most likely between 100 and 250 L-1, whereas it can reach as high as 500 L-1 over its neighboring land and tropical oceans. Given the same magnitude of precipitation, the spectrum of ice particle sizes is found to be wider over the TP than other regions.
基金supported by the National Natural Science Foundation of China[grant number 41530427],[grant number41590871]
文摘Based on Droplet Measurement Technologies data of a pre-stratiform-cloud precipitation event in Ganzhou, Jiangxi Province, on 11 November 2015, and combined with radar data, this paper comprehensively analyzes the macro-and microphysical characteristics of cloud in the upper trough.The results show that:(1) Detection takes place in the early stage of precipitation and the cloud has multiple layers. The cloud type is stratiform(Sc) and the height of the cloud base is 1009 m, 1009–1700 m is the low Sc layer, 1700–3000 m is the no-cloud level, and 3000 to the maximum height detected is another Sc layer.(2) The Sc is inhomogeneous in the horizontal and vertical directions.The particle number concentration and the effective diameter below the 0 °C layer is significantly higher than that above the 0 °C layer, which is in accordance with the ‘seeder–feeder' mechanism.Above the 0 °C layer is seeder cloud, where needle, column ice crystals and water droplets coexist,and sublimation and coalescence are the main processes. The morphology of ice crystals changes from needle to column, plate, and polymer as height decreases. Below the 0 °C warm layer is a supply cloud, and the particles develop in the supply cloud with abundant liquid water content. Ice melting and coalescence dominate the warm layer, which makes the effective diameter significantly increase. Down to 4150 m, the ice melts completely into raindrops.
基金supported by the National Natural Science Foundation of China[grant numbers 41275039,61327810 and91337214]
文摘Accurate observation of clouds is challenging because of the high variability and complexity of cloud types and occurrences.By using the long-term cloud data collected during the ARM program at the Southern Great Plains central facility during 2001-2010,the consistencies and differences in the macrophysical properties of clouds between radiosonde and ground-based active remote sensing are quantitatively evaluated according to six cloud types:low;mid-low(ML);high-midlow;mid;high-mid(HM);and high.A similar variability trend is exhibited by the radiosonde and surface observations for the cloud fractions of the six cloud types.However,the magnitudes of the differences between the two methods are different among the six cloud types,with the largest difference seen in the high clouds.The distribution of the cloud-base height of the ML,mid,and HM clouds agrees in both methods,whereas large differences are seen in the cloud-top height for the ML and high clouds.The cloud thickness variations generally agree between the two datasets for the six cloud types.
基金sponsored by the National Basic Research Program of China (973 Program, 2013CB430102)the Program of Scientific Innovation Research of College Graduate in Jiangsu Province (Grant Nos. CXZZ12-0490 and CXZZ11-0606)The National Center for Atmospheric Research is sponsored by the National Science Foundation
文摘The cloud-detection procedure developed by McNally and Watts(MW03) was added to the Weather Research and Forecasting Data Assimilation System. To provide some guidelines for setting up cloud-detection schemes, this study compares the MW03 scheme to the Multivariate and Minimum Residual(MMR) scheme for both simulated and real Advanced Infrared Sounder(AIRS) radiances. Results show that there is a high level of consistency between the results from simulated and real AIRS data. As expected, both cloud-detection schemes perform well in finding the cloud-contaminated channels based on the channels' peak levels. The clouddetection results from MW03 are sensitive to the prescribed brightness temperature innovation threshold and brightness temperature gradient threshold. When increasing the brightness temperature innovation threshold for MW03 to roughly eight times the default threshold, the two cloud-detection schemes produce consistent data rejection distributions overall for high channels. MMR generally retains more data for long-wave channels. For both cloud-detection schemes, there is a high level of consistency between the cloud-free pixels and the visible/near-IR(Vis/NIR) cloud mask.
文摘Different image processing algorithms have been evaluated in the context of geological mapping using Landsat TM data. False color composites, the principal component imagery, and IHS decorrelation stretching method for Landsat-5 TM data have been found useful for delineating the regional geological features, mainly to provide the maximum geological information of the studied area . The study testifies that using which image processing yields best results for geological mapping in arid and semiarid regions by preserving morphological and spectral information. Generally, the studied area can be divided into three main geological units: Basaltic intrusive rocks, Metamorphic with varying intensities and Sedimentary rocks.
基金supported by the National Natural Science Foundation of China (Grant No. 40805056)the National Key Technologies R&D Program of China (Grant No. 2006BAC12B00)
文摘The microphysical "three-layer" model for stratiform clouds over a midlatitude location in Northwest China is investigated by combining in situ airborne Particle Measuring Systems, Inc. (PMS), radar measurements, and the NCAR/Penn State Mesoscale Model Version 5 (MM5) simulation with a two-moment microphysics scheme. The coexistence of measured supercooled liquid water and small ice particles produces snow particles below the cloud top in the second layer. Peak number concentration and mean diameter of cloud water and raindrop appear in the third warm layer. A thin dry layer just below the melting layer is also observed. The predicted precipitation is tested by equitable threat score. The melting layer is clearly defined in the radar image and model radar reflectivity output is agreement with the observations. The model results provide features of the microphysical structure for every layer of "three-layer" model at Yan'an station. For both observation and model simulation, the "three-layer" model explains the stratiform precipitation formation completely and comprehensively.
基金ASCOS was made possible by grants from DAMOCLES and the Knut and Alice Wallenberg Foundation,and was organized by the Swedish Polar Research Secretariat
文摘Arctic clouds strongly influence the regional radiation balance, temperature, melting of sea ice, and freezing of sea water. Despite their importance, there is a lack of systematic and reliabie observations of Arctic clouds. The CloudSat satellite launched in 2006 with a 94GHz Cloud Profiling Radar (CPR) may contribute to close this gap. Here we compare one of the key parameters, the cloud liquid water path (LWP) retrieved from CloudSat observations and from microwave radiometer (MWR) data taken during the ASCOS (Arctic Summer Cloud Ocean Study) cruise of the research vessel Oden from August to September 2008. Over the 45 days of the ASCOS cruise, collocations closer than 3 h and 100 km were found in only 9 d, and collocations closer than 1 h and 30 km in only 2 d. The poor correlations in the scatter plots of the two LWP retrievals can be explained by the patchiness of the cloud cover in these two days (August 5th and September 7th), as confirmed by coincident MODIS (Moderate-resolution Imaging Spectroradiome- ter) images. The averages of Oden-observed LWP values are systematically higher (40-70 g m-2) than the corresponding CloudSat observations (0-50 g m2). These are cases of generally low LWP with presumably small droplets, and may be explained by the little sensitivity of the CPR to small droplets or by the surface clutter.
基金funded by the National Key Research and Devel-opment Program of China[grant number 2017YFC1501405]the National Natural Science Foundation of China[grant numbers 41975180,41705119,and 41575131]the National Center of Meteorology,Abu Dhabi,AE(UAE Research Program for Rain Enhancement Science)。
文摘Based on cloud-probe data and airborne Ka-band cloud radar data collected in Baoding on 5 August 2018,the microphysical structural characteristics of cumulus(Cu)cloud at the precipitation stage were investigated.The cloud droplets in the Cu cloud were found to be significantly larger than those in stratiform(STF)cloud.In the Cu cloud,most cloud particles were between 7 and 10μm in diameter,while in the STF cloud the majority of cloud particles grew no larger than 2μm.The sensitivity of cloud properties to aerosols varied with height.The cloud droplet effective radius showed a negative relationship with the aerosol number concentration(Na)in the cloud planetary boundary layer(PBL)and upper layer above the PBL.However,the cloud droplet concentration(Nc)varied little with decreased Na in the high liquid water content region above 1500 m.High Na values of between 300 and 1853 cm-3 were found in the PBL,and the maximum Na was sampled near the surface in August in the Hebei region,which was lower than that in autumn and winter.High radar reflectivity corresponded to large FCDP(fast cloud droplet probe)particle concentrations and small aerosol particle concentrations,and vice versa for low radar reflectivity.Strong updrafts in the Cu cloud increased the peak radius and Nc,and broadened cloud droplet spectrum;lower air temperature was favorable for particle condensational growth and produced larger droplets.
文摘One of the biggest factors to deteriorate the satellite product quality is cloud coverage. Therefore, cloud masking process is important to improve the quality of various satellite products. However, satellite-based cloud discrimination algorithm has been developing and efficient ground-based cloud observations are necessary to validate satellite-based cloud discrimination. The purpose of this study is to develop the efficient ground-based cloud observation methodology using whole sky camera. This paper deals with methods how to discriminate cloud portions on whole sky image, how to apply the ground-based cloud observation to the validations for satellite products. For the cloud discrimination on whole sky image, we propose SI (sky index) and BI (brightness index) calculated from RGB (red, green and blue) channels. SI shows the extent of the blueness and gray scale and BI indicates the extent of the brightness. Sun, cloud and blue sky portions are divided by SI and BI threshold. As an application of ground-based cloud observation for the validation of satellite products, clouds portions discriminated from whole sky image are projected onto ground surface with map coordinate. We also examine to compare with cloud portions on whole sky images and MODIS (MODerate resolution Imaging Spectroradiometer) image as one of experiments. The proposed ground-based cloud observation method and its extension to satellite-based cloud discrimination should be connected to improve the quality of satellite products.
基金funded by Seismic Monitoring,Prediction and Research Project"The Application of Ultra Low Frequency Electromagnetic Observation in Yunnan and Its Adjacent Region"of China Earthquake Administration in 2010
文摘Located in an earthquake-prone region,the geological structures in Yunnan Province are complex. Taking into account that Tonghai county is located in the intersection of Xiaojiang fault and Honghe fault, an ACF-4M ELF electromagnetic instrument was installed at the Tonghai seismic station,which has produced continuous reliable data. The author collected the data and information for the year 2009 and 2010,and performed analysis on the variation characteristics of both geomagnetic fields and electrical resistivity. The result shows that the 1Hz and 39Hz electromagnetic power spectra are 0. 2 to 1. 4 orders of magnitude higher than the normal values immediately before many earthquakes. The anomalies are represented by the abrupt changes of the electric and magnetic field power spectra in earthquake and aftershock sequences,and the amplitude of change is related to the size of earthquake magnitude and epicentral distance. The electrical resistivity also obviously changes. Therefore, further research on the anomalous characteristics of ELF electromagnetic data will be meaningful to the future use of this instrument in earthquake prediction.
基金supported by the National Key Basic Research Development Program of China (Grant No. 2014CB441403)the National Natural Science Foundation of China (Grant Nos. 41175003 & 41475003)
文摘The upward lightning(UL) initiated from the top of tall buildings(at least above 100 m) is a type of atmospheric discharge. Currently, we understand the nature of the UL from ground observations, but the corresponding theoretical research is lacking. Based on an existing bidirectional leader stochastic model, a stochastic parameterization scheme for the UL has been built and embedded in an existing two-dimensional thundercloud charge/discharge model. The ULs simulated from the experiments with two-dimensional high resolution agree generally with the observation results. By analyzing the charge structure of thunderstorm clouds, we determined the in-cloud environmental characteristics that favor the initiation of conventional cloud-to-ground(CG) flashes and analyzed the differences and similarities of some characteristics of the positive and the negative UL. Simulation results indicate that the positive ULs are typically other-lightning-triggered ULs(OLTUL) and are usually a discharge phenomenon between the ground and the lower positive charge region appearing below the main middle negative charge region. The effect of the previous in-cloud lightning(IC) process of space electrical field provides favorable conditions for the initiation of a positive UL. Its entire discharge process is limited, and the branches of the leader are fewer in number as its discharge is not sufficient. A negative UL is generally a discharge phenomenon of the dipole charge structure between the ground and the main negative charge region. The lower temperature stratification and the sinking of the hydrometeors typically initiate a negative UL. Negative ULs develop strongly and have more branches. The OLTUL is initiated mainly during the development stage of a thunderstorm, while the self-triggered UL(STUL) is initiated mainly during the dissipation stage of a thunderstorm.