The defect detection of wafers is an important part of semiconductor manufacturing.The wafer defect map formed from the defects can be used to trace back the problems in the production process and make improvements in...The defect detection of wafers is an important part of semiconductor manufacturing.The wafer defect map formed from the defects can be used to trace back the problems in the production process and make improvements in the yield of wafer manufacturing.Therefore,for the pattern recognition of wafer defects,this paper uses an improved ResNet convolutional neural network for automatic pattern recognition of seven common wafer defects.On the basis of the original ResNet,the squeeze-and-excitation(SE)attention mechanism is embedded into the network,through which the feature extraction ability of the network can be improved,key features can be found,and useless features can be suppressed.In addition,the residual structure is improved,and the depth separable convolution is added to replace the traditional convolution to reduce the computational and parametric quantities of the network.In addition,the network structure is improved and the activation function is changed.Comprehensive experiments show that the precision of the improved ResNet in this paper reaches 98.5%,while the number of parameters is greatly reduced compared with the original model,and has well results compared with the common convolutional neural network.Comprehensively,the method in this paper can be very good for pattern recognition of common wafer defect types,and has certain application value.展开更多
The cold chain in the production area of fruits and vegetables is the primary link to reduce product loss and improve product quality,but it is also a weak link.With the application of big data technology in cold chai...The cold chain in the production area of fruits and vegetables is the primary link to reduce product loss and improve product quality,but it is also a weak link.With the application of big data technology in cold chain logistics,intelligent devices,and technologies have become important carriers for improving the efficiency of cold chain logistics in fruit and vegetable production areas,extending the shelf life of fruits and vegetables,and reducing fruit and vegetable losses.They have many advantages in fruit and vegetable pre-cooling,sorting and packaging,testing,warehousing,transportation,and other aspects.This article summarizes the rapidly developing and widely used intelligent technologies at home and abroad in recent years,including automated guided vehicle intelligent handling based on electromagnetic or optical technology,intelligent sorting based on sensors,electronic optics,and other technologies,intelligent detection based on computer vision technology,intelligent transportation based on perspective imaging technology,etc.It analyses and studies the innovative research and achievements of various scholars in applying intelligent technology in fruit and vegetable cold chain storage,sorting,detection,transportation,and other links,and improves the efficiency of fruit and vegetable cold chain logistics.However,applying intelligent technology in fruit and vegetable cold chain logistics also faces many problems.The challenges of high cost,difficulty in technological integration,and talent shortages have limited the development of intelligent technology in the field of fruit and vegetable cold chains.To solve the current problems,it is proposed that costs be controlled through independent research and development,technological innovation,and other means to lower the entry threshold for small enterprises.Strengthen integrating intelligent technology and cold chain logistics systems to improve data security and system compatibility.At the same time,the government should introduce relevant policies,provide necessary financial support,and establish talent training mechanisms.Accelerate the development and improvement of intelligent technology standards in the field of cold chain logistics.Through technological innovation,cost control,talent cultivation,and policy guidance,we aim to promote the upgrading of the agricultural industry and provide ideas for improving the quality and efficiency of fruit and vegetable cold chain logistics.展开更多
The orchards usually have rough terrain,dense tree canopy and weeds.It is hard to use GNSS for autonomous navigation in orchard due to signal occlusion,multipath effect,and radio frequency interference.To achieve auto...The orchards usually have rough terrain,dense tree canopy and weeds.It is hard to use GNSS for autonomous navigation in orchard due to signal occlusion,multipath effect,and radio frequency interference.To achieve autonomous navigation in orchard,a visual navigation method based on multiple images at different shooting angles is proposed in this paper.A dynamic image capturing device is designed for camera installation and multiple images can be shot at different angles.Firstly,the obtained orchard images are classified into sky and soil detection stage.Each image is transformed to HSV space and initially segmented into sky,canopy and soil regions by median filtering and morphological processing.Secondly,the sky and soil regions are extracted by the maximum connected region algorithm,and the region edges are detected and filtered by the Canny operator.Thirdly,the navigation line in the current frame is extracted by fitting the region coordinate points.Then the dynamic weighted filtering algorithm is used to extract the navigation line for the soil and sky detection stage,respectively,and the navigation line for the sky detection stage is mirrored to the soil region.Finally,the Kalman filter algorithm is used to fuse and extract the final navigation path.The test results on 200 images show that the accuracy of visual navigation path fitting is 95.5%,and single frame image processing costs 60 ms,which meets the real-time and robustness requirements of navigation.The visual navigation experiments in Camellia oleifera orchard show that when the driving speed is 0.6 m/s,the maximum tracking offset of visual navigation in weed-free and weedy environments is 0.14 m and 0.24 m,respectively,and the RMSE is 30 mm and 55 mm,respectively.展开更多
Psychological studies on human subjects show that contrast detection learning promote learner's sensitivity to visual stimulus contrast. The underlying neural mechanisms remain unknown. In this study, three cats (Fe...Psychological studies on human subjects show that contrast detection learning promote learner's sensitivity to visual stimulus contrast. The underlying neural mechanisms remain unknown. In this study, three cats (Felis catus) were trained to perform monocularly a contrast detection task by two-altemative forced choice method. The perceptual ability of each cat improved remarkably with learning as indicated by a significantly increased contrast sensitivity to visual stimuli. The learning effect displayed an evident specificity to the eye employed for learning but could partially transfer to the naive eye, prompting the possibility that contrast detection learning might cause neural plasticity before and after the information from both eyes are merged in the visual pathway. Further, the contrast sensitivity improvement was evident basically around the spatial frequency (SF) used for learning, which suggested that contrast detection learning effect showed, to some extent, a SF specificity. This study indicates that cat exhibits a property of contrast detection learning similar to human subjects and can be used as an animal model for subsequent investigations on the neural correlates that mediate learning-induced contrast sensitivity improvement in humans.展开更多
Brood parasitism and egg mimicry of Himalayan Cuckoo(Cuculus saturatus) on its host Blyth's Leaf Warbler(Phylloscopus reguloides) were studied in south-western China from April to July 2009.The cuckoo laid a whit...Brood parasitism and egg mimicry of Himalayan Cuckoo(Cuculus saturatus) on its host Blyth's Leaf Warbler(Phylloscopus reguloides) were studied in south-western China from April to July 2009.The cuckoo laid a white egg with fine brown markings on the blunt end.The eggs were conspicuously bigger than the host's own,with 2.06 g in mass and 1.91 cm3 in volume.Visual modeling showed that the cuckoo eggs,which from the human eye appeared to mimic the host eggs to a great extent,were completely different from the host eggs in both hue and chroma.The characters of the Himalayan Cuckoo nestling,reported for the first time,included two triangular and black patches on its gape,which appeared from four days old and became darker with age and growth.While this character also exists in nestlings of Oriental Cuckoo(C.optatus),it has not been found for other Cuculus species.Our results reveal cryptic aspects in the cuckoo-host egg color matching,which are not visible to the naked human eye,and indicate that high mimetic cuckoo eggs rejected by hosts,as determined by human observers in previous studies,might not be mimetic as birds see them.展开更多
To realize high-precision automatic measurement of two-dimensional geometric features on parts, a cooperative measurement system based on machine vision is constructed. Its hardware structure, functional composition a...To realize high-precision automatic measurement of two-dimensional geometric features on parts, a cooperative measurement system based on machine vision is constructed. Its hardware structure, functional composition and working principle are introduced. The mapping relationship between the feature image coordinates and the measuring space coordinates is established. The method of measuring path planning of small field of view (FOV) images is proposed. With the cooperation of the panoramic image of the object to be measured, the small FOV images with high object plane resolution are acquired automatically. Then, the auxiliary measuring characteristics are constructed and the parameters of the features to be measured are automatically extracted. Experimental results show that the absolute value of relative error is less than 0. 03% when applying the cooperative measurement system to gauge the hole distance of 100 mm nominal size. When the object plane resolving power of the small FOV images is 16 times that of the large FOV image, the measurement accuracy of small FOV images is improved by 14 times compared with the large FOV image. It is suitable for high-precision automatic measurement of two-dimensional complex geometric features distributed on large scale parts.展开更多
To prevent a vehicle from departing the lane in assistant or automatic steering, real-time vision-based detection of lane is studied. The system architecture, detecting principle and lane model are described. Then the...To prevent a vehicle from departing the lane in assistant or automatic steering, real-time vision-based detection of lane is studied. The system architecture, detecting principle and lane model are described. Then the detecting algorithm of the lane image is discussed in detail. In this algorithm, several proper sub-windows in one image are first selected as the processing regions. To every sub-window, by means of such steps as appropriate pre-processing, edge detection and Hough transform, etc., the lane description features are extracted. Experimental results reveal that this detection method is of good real-time, high recognition reliability and strong robustness, etc., which can provide the decision-making foundation for the following automatic or assistant steering to some extent.展开更多
基金supported by the 2021 Annual Scientific Research Funding Project of Liaoning Pro-vincial Department of Education(Nos.LJKZ0535,LJKZ0526)the Natural Science Foundation of Liaoning Province(No.2021-MS-300)。
文摘The defect detection of wafers is an important part of semiconductor manufacturing.The wafer defect map formed from the defects can be used to trace back the problems in the production process and make improvements in the yield of wafer manufacturing.Therefore,for the pattern recognition of wafer defects,this paper uses an improved ResNet convolutional neural network for automatic pattern recognition of seven common wafer defects.On the basis of the original ResNet,the squeeze-and-excitation(SE)attention mechanism is embedded into the network,through which the feature extraction ability of the network can be improved,key features can be found,and useless features can be suppressed.In addition,the residual structure is improved,and the depth separable convolution is added to replace the traditional convolution to reduce the computational and parametric quantities of the network.In addition,the network structure is improved and the activation function is changed.Comprehensive experiments show that the precision of the improved ResNet in this paper reaches 98.5%,while the number of parameters is greatly reduced compared with the original model,and has well results compared with the common convolutional neural network.Comprehensively,the method in this paper can be very good for pattern recognition of common wafer defect types,and has certain application value.
基金National Natural Science Foundation of China(32301718)Chinese Academy of Agricultural Sciences under the Special Institute-level Coordination Project for Basic Research Operating Costs(S202328)。
文摘The cold chain in the production area of fruits and vegetables is the primary link to reduce product loss and improve product quality,but it is also a weak link.With the application of big data technology in cold chain logistics,intelligent devices,and technologies have become important carriers for improving the efficiency of cold chain logistics in fruit and vegetable production areas,extending the shelf life of fruits and vegetables,and reducing fruit and vegetable losses.They have many advantages in fruit and vegetable pre-cooling,sorting and packaging,testing,warehousing,transportation,and other aspects.This article summarizes the rapidly developing and widely used intelligent technologies at home and abroad in recent years,including automated guided vehicle intelligent handling based on electromagnetic or optical technology,intelligent sorting based on sensors,electronic optics,and other technologies,intelligent detection based on computer vision technology,intelligent transportation based on perspective imaging technology,etc.It analyses and studies the innovative research and achievements of various scholars in applying intelligent technology in fruit and vegetable cold chain storage,sorting,detection,transportation,and other links,and improves the efficiency of fruit and vegetable cold chain logistics.However,applying intelligent technology in fruit and vegetable cold chain logistics also faces many problems.The challenges of high cost,difficulty in technological integration,and talent shortages have limited the development of intelligent technology in the field of fruit and vegetable cold chains.To solve the current problems,it is proposed that costs be controlled through independent research and development,technological innovation,and other means to lower the entry threshold for small enterprises.Strengthen integrating intelligent technology and cold chain logistics systems to improve data security and system compatibility.At the same time,the government should introduce relevant policies,provide necessary financial support,and establish talent training mechanisms.Accelerate the development and improvement of intelligent technology standards in the field of cold chain logistics.Through technological innovation,cost control,talent cultivation,and policy guidance,we aim to promote the upgrading of the agricultural industry and provide ideas for improving the quality and efficiency of fruit and vegetable cold chain logistics.
基金National Key Research and Development Program of China(2022YFD2202103)National Natural Science Foundation of China(31971798)+2 种基金Zhejiang Provincial Key Research&Development Plan(2023C02049、2023C02053)SNJF Science and Technology Collaborative Program of Zhejiang Province(2022SNJF017)Hangzhou Agricultural and Social Development Research Project(202203A03)。
文摘The orchards usually have rough terrain,dense tree canopy and weeds.It is hard to use GNSS for autonomous navigation in orchard due to signal occlusion,multipath effect,and radio frequency interference.To achieve autonomous navigation in orchard,a visual navigation method based on multiple images at different shooting angles is proposed in this paper.A dynamic image capturing device is designed for camera installation and multiple images can be shot at different angles.Firstly,the obtained orchard images are classified into sky and soil detection stage.Each image is transformed to HSV space and initially segmented into sky,canopy and soil regions by median filtering and morphological processing.Secondly,the sky and soil regions are extracted by the maximum connected region algorithm,and the region edges are detected and filtered by the Canny operator.Thirdly,the navigation line in the current frame is extracted by fitting the region coordinate points.Then the dynamic weighted filtering algorithm is used to extract the navigation line for the soil and sky detection stage,respectively,and the navigation line for the sky detection stage is mirrored to the soil region.Finally,the Kalman filter algorithm is used to fuse and extract the final navigation path.The test results on 200 images show that the accuracy of visual navigation path fitting is 95.5%,and single frame image processing costs 60 ms,which meets the real-time and robustness requirements of navigation.The visual navigation experiments in Camellia oleifera orchard show that when the driving speed is 0.6 m/s,the maximum tracking offset of visual navigation in weed-free and weedy environments is 0.14 m and 0.24 m,respectively,and the RMSE is 30 mm and 55 mm,respectively.
基金Supported by Natural Science Foundation of Anhui Province(070413138)the foundation of Key Laboratory of Anhui Province and the Key Research Foundation from Education Department of Anhui Province(KJ2009A167)
文摘Psychological studies on human subjects show that contrast detection learning promote learner's sensitivity to visual stimulus contrast. The underlying neural mechanisms remain unknown. In this study, three cats (Felis catus) were trained to perform monocularly a contrast detection task by two-altemative forced choice method. The perceptual ability of each cat improved remarkably with learning as indicated by a significantly increased contrast sensitivity to visual stimuli. The learning effect displayed an evident specificity to the eye employed for learning but could partially transfer to the naive eye, prompting the possibility that contrast detection learning might cause neural plasticity before and after the information from both eyes are merged in the visual pathway. Further, the contrast sensitivity improvement was evident basically around the spatial frequency (SF) used for learning, which suggested that contrast detection learning effect showed, to some extent, a SF specificity. This study indicates that cat exhibits a property of contrast detection learning similar to human subjects and can be used as an animal model for subsequent investigations on the neural correlates that mediate learning-induced contrast sensitivity improvement in humans.
基金supported by National Natural Science Foundation of China(3086004431071938)+1 种基金Program for New Century Excellent Talents in University(NCET-10-0111)China Postdoctoral Science Foundation(20110490967)funded project
文摘Brood parasitism and egg mimicry of Himalayan Cuckoo(Cuculus saturatus) on its host Blyth's Leaf Warbler(Phylloscopus reguloides) were studied in south-western China from April to July 2009.The cuckoo laid a white egg with fine brown markings on the blunt end.The eggs were conspicuously bigger than the host's own,with 2.06 g in mass and 1.91 cm3 in volume.Visual modeling showed that the cuckoo eggs,which from the human eye appeared to mimic the host eggs to a great extent,were completely different from the host eggs in both hue and chroma.The characters of the Himalayan Cuckoo nestling,reported for the first time,included two triangular and black patches on its gape,which appeared from four days old and became darker with age and growth.While this character also exists in nestlings of Oriental Cuckoo(C.optatus),it has not been found for other Cuculus species.Our results reveal cryptic aspects in the cuckoo-host egg color matching,which are not visible to the naked human eye,and indicate that high mimetic cuckoo eggs rejected by hosts,as determined by human observers in previous studies,might not be mimetic as birds see them.
基金The National Natural Science Foundation of China(No.51175267)the Natural Science Foundation of Jiangsu Province(No.BK2010481)+2 种基金the Ph.D.Programs Foundation of Ministry of Education of China(No.20113219120004)China Postdoctoral Science Foundation(No.20100481148)the Postdoctoral Science Foundation of Jiangsu Province(No.1001004B)
文摘To realize high-precision automatic measurement of two-dimensional geometric features on parts, a cooperative measurement system based on machine vision is constructed. Its hardware structure, functional composition and working principle are introduced. The mapping relationship between the feature image coordinates and the measuring space coordinates is established. The method of measuring path planning of small field of view (FOV) images is proposed. With the cooperation of the panoramic image of the object to be measured, the small FOV images with high object plane resolution are acquired automatically. Then, the auxiliary measuring characteristics are constructed and the parameters of the features to be measured are automatically extracted. Experimental results show that the absolute value of relative error is less than 0. 03% when applying the cooperative measurement system to gauge the hole distance of 100 mm nominal size. When the object plane resolving power of the small FOV images is 16 times that of the large FOV image, the measurement accuracy of small FOV images is improved by 14 times compared with the large FOV image. It is suitable for high-precision automatic measurement of two-dimensional complex geometric features distributed on large scale parts.
文摘To prevent a vehicle from departing the lane in assistant or automatic steering, real-time vision-based detection of lane is studied. The system architecture, detecting principle and lane model are described. Then the detecting algorithm of the lane image is discussed in detail. In this algorithm, several proper sub-windows in one image are first selected as the processing regions. To every sub-window, by means of such steps as appropriate pre-processing, edge detection and Hough transform, etc., the lane description features are extracted. Experimental results reveal that this detection method is of good real-time, high recognition reliability and strong robustness, etc., which can provide the decision-making foundation for the following automatic or assistant steering to some extent.