A series of marine natural gas fields were recently discovered in oolitic dolomites of the Lower Triassic Feixianguan formation, northeastern Sichuan Basin, southwest China. The mechanism forming these reservoir dolom...A series of marine natural gas fields were recently discovered in oolitic dolomites of the Lower Triassic Feixianguan formation, northeastern Sichuan Basin, southwest China. The mechanism forming these reservoir dolomites is debatable, limiting the ability to characterize these reservoir successfully. Based on the investigation of the representative Dukouhe, Luojiazhai, and Puguang areas, this issue was addressed by examining the distribution, petrology, and geochemistry of the dolomites, the most comprehensive study to date was provided. Dolomitization occurred at a very early stage of diagenesis, as shown by the petrological features of the rock fabric. Vadose silt, which is composed primarily of dolomitic clasts, is found in the primary and secondary pores of the oolitic dolomite. This indicates that the overlying strata were subjected to dolomitization when the Feixianguan formation was located in the vadose zone. Therefore, it may be inferred that the dolomitization which occurred before the formation was exposed to meteoric conditions. The spatial distribution and geochemical characteristics of the dolomite indicate that dolomitization occurred as a result of seepage reflux. The degree of dolomitization decreases with increasing distance from the evaporative lagoon. Furthermore, the type and porosity of the dolomite vary in different zones of the upward-shoaling sequence, with the porosity gradually decreasing from the highest layer to the lowest layer. This reflects a close relationship between dolomitization and seawater evaporation during the formation of the dolomite. Geochemical analysis provided further evidence for the relationship between the dolomitization fluid and the coeval seawater. The 87Sr/86Sr and 813C isotopes, as well as the abundances of trace elements, Fe and Mn, indicate that seawater concentrated by evaporation acted as the dolomitization fluid. These results also show that dolomitization most likely occurred in a semi-closed diagenetic environment. Therefore, the main mechanism of oolitic dolomite formation is seepage reflux, which occurred at an early stage of diagenesis.展开更多
Based on 150-year simulations of a regional climate model, RegCM3, under the Special Report on Emissions Scenarios (SRES) A1B scenario, the effective drought index (EDI) is used to project the future drought change in...Based on 150-year simulations of a regional climate model, RegCM3, under the Special Report on Emissions Scenarios (SRES) A1B scenario, the effective drought index (EDI) is used to project the future drought change in China. During the baseline period 1986-2005, RegCM3 was found to reliably simulate the spatial pattern of drought over the country. Over the 21st century, the regionally averaged EDI should increase, corresponding to a decrease of drought, while the probability of extreme drought events should increase. Geographically, drought should clearly increase in Northeast China, the middle and lower reaches of the Yangtze River valley, Southwest China, and southern Tibet but decrease in most parts of the rest of the country.展开更多
In this study,the relationship between the North Atlantic Oscillation (NAO) in winter (DecemberFebruary) and the precipitation over southem China (SCP) in the following spring (March-May) was investigated.Resu...In this study,the relationship between the North Atlantic Oscillation (NAO) in winter (DecemberFebruary) and the precipitation over southem China (SCP) in the following spring (March-May) was investigated.Results showed an interdecadal change,from strong to weak connection,in their connection.Before the early 1980s,they were highly correlated,with a strong (weak) winter NAO followed by an increased (decreased) spring SCP.However,after the early 1980s,their relationship was weakened significantly.This unstable relationship may be linked to the climatological change of East Asian jet.Before the early 1980s,the wave train along the Asian jet propagated the NAO signal eastward to East Asia and affected local upper-tropospheric atmospheric circulation.A strong NAO in winter led to an anomalous anticyclonic circulation at the south side of 30°N in East Asia in spring,resulting in an increase of SCP.In contrast,after the early 1980s,the wave train pattern along the Asian jet extended eastward due to strengthening of the climatological East Asian jet.Correspondingly,the NAO-related East Asian atmospheric circulations in the upper troposphere shifted eastward,thereby weakening the linkage between the spring SCP and the winter NAO.展开更多
基金Project(2012CB214803)supported by the Major State Basic Research Development Program,ChinaProject(2011ZX5017-001-HZO2)supported by the National Science & Technology Special Project,China+1 种基金Project(2011D-5006-0105)supported by the PetroChina Research Fund,ChinaProject(SZD0414)supported by the Key Subject Construction Project of Sichuan Province,China
文摘A series of marine natural gas fields were recently discovered in oolitic dolomites of the Lower Triassic Feixianguan formation, northeastern Sichuan Basin, southwest China. The mechanism forming these reservoir dolomites is debatable, limiting the ability to characterize these reservoir successfully. Based on the investigation of the representative Dukouhe, Luojiazhai, and Puguang areas, this issue was addressed by examining the distribution, petrology, and geochemistry of the dolomites, the most comprehensive study to date was provided. Dolomitization occurred at a very early stage of diagenesis, as shown by the petrological features of the rock fabric. Vadose silt, which is composed primarily of dolomitic clasts, is found in the primary and secondary pores of the oolitic dolomite. This indicates that the overlying strata were subjected to dolomitization when the Feixianguan formation was located in the vadose zone. Therefore, it may be inferred that the dolomitization which occurred before the formation was exposed to meteoric conditions. The spatial distribution and geochemical characteristics of the dolomite indicate that dolomitization occurred as a result of seepage reflux. The degree of dolomitization decreases with increasing distance from the evaporative lagoon. Furthermore, the type and porosity of the dolomite vary in different zones of the upward-shoaling sequence, with the porosity gradually decreasing from the highest layer to the lowest layer. This reflects a close relationship between dolomitization and seawater evaporation during the formation of the dolomite. Geochemical analysis provided further evidence for the relationship between the dolomitization fluid and the coeval seawater. The 87Sr/86Sr and 813C isotopes, as well as the abundances of trace elements, Fe and Mn, indicate that seawater concentrated by evaporation acted as the dolomitization fluid. These results also show that dolomitization most likely occurred in a semi-closed diagenetic environment. Therefore, the main mechanism of oolitic dolomite formation is seepage reflux, which occurred at an early stage of diagenesis.
基金supported by the National Basic Research Program of China(Grant No.2009CB421407)the National Natural Science Foundation of China(Grant No.41130103)
文摘Based on 150-year simulations of a regional climate model, RegCM3, under the Special Report on Emissions Scenarios (SRES) A1B scenario, the effective drought index (EDI) is used to project the future drought change in China. During the baseline period 1986-2005, RegCM3 was found to reliably simulate the spatial pattern of drought over the country. Over the 21st century, the regionally averaged EDI should increase, corresponding to a decrease of drought, while the probability of extreme drought events should increase. Geographically, drought should clearly increase in Northeast China, the middle and lower reaches of the Yangtze River valley, Southwest China, and southern Tibet but decrease in most parts of the rest of the country.
基金supported by the Special Fund for Public Welfare Industry (Meteorology) (GYHY201306026)the National Natural Science Foundation of China (41275078)the National Basic Research Program of China (2009CB421407)
文摘In this study,the relationship between the North Atlantic Oscillation (NAO) in winter (DecemberFebruary) and the precipitation over southem China (SCP) in the following spring (March-May) was investigated.Results showed an interdecadal change,from strong to weak connection,in their connection.Before the early 1980s,they were highly correlated,with a strong (weak) winter NAO followed by an increased (decreased) spring SCP.However,after the early 1980s,their relationship was weakened significantly.This unstable relationship may be linked to the climatological change of East Asian jet.Before the early 1980s,the wave train along the Asian jet propagated the NAO signal eastward to East Asia and affected local upper-tropospheric atmospheric circulation.A strong NAO in winter led to an anomalous anticyclonic circulation at the south side of 30°N in East Asia in spring,resulting in an increase of SCP.In contrast,after the early 1980s,the wave train pattern along the Asian jet extended eastward due to strengthening of the climatological East Asian jet.Correspondingly,the NAO-related East Asian atmospheric circulations in the upper troposphere shifted eastward,thereby weakening the linkage between the spring SCP and the winter NAO.