Aiming at various faults in an air conditioning system,the fault characteristics are analyzed.The influence of the faults on the energy consumption and thermal comfort of the system are also discussed.The simulation r...Aiming at various faults in an air conditioning system,the fault characteristics are analyzed.The influence of the faults on the energy consumption and thermal comfort of the system are also discussed.The simulation results show that the measurement faults of the supply air temperature can lead to the increase in energy consumption.According to the fault characteristics,a data-driven method based on a neural network is presented to detect and diagnose the faults of air handling units.First,the historical data are selected to train the neural network so that it can recognize and predict the operation of the system.Then,the faults can be diagnosed by calculating the relative errors denoting the difference between the measuring values and the prediction outputs.Finally,the fault diagnosis strategy using the neural network is validated by using a simulator based on the TRNSYS platform.The results show that the neural network can diagnose different faults of the temperature,the flow rate and the pressure sensors in the air conditioning system.展开更多
In order to investigate the leak detection strategy of a heating network,a space-based simulation mathematical model for the heating network under leakage conditions is built by graph theory.The pressure changes of al...In order to investigate the leak detection strategy of a heating network,a space-based simulation mathematical model for the heating network under leakage conditions is built by graph theory.The pressure changes of all the nodes in the heating network are obtained from node leak and pipe leak conditions.Then,a leakage diagnosis system based on the back propagation(BP)neural network is established.This diagnosis system can predict the leakage pipe by collecting the pressure change data of the monitoring points,which can preliminary estimate the leak location.The usefulness of this system is proved by an example.The experimental results show that the forecast accuracy by this diagnosis system can reach 100%.展开更多
Traditional scheduled maintenance systems are costly, labor intensive, and typically provide noncomprehensive detection and diagnosis of engine faults. The engine monitoring system (EMS) on modern aircrafts has the p...Traditional scheduled maintenance systems are costly, labor intensive, and typically provide noncomprehensive detection and diagnosis of engine faults. The engine monitoring system (EMS) on modern aircrafts has the potential to provide maintenance personnel with valuable information for detecting and diagnosing engine faults. In this paper, an RBF neural network approach is applied to aeroengine gas path fault diagnosis. It can detect multiple faults and quantify the amount of deterioration of the various engine components as a function of measured parameters. The results obtained demonstrate that the accuracy of diagnosis is consistent with practical requirements. The approach takes advantage of the nonlinear mapping feature of neural networks to capture the appropriate characteristics of an aeroengine. The methodology is generic and applicable to other similar plants having high complexity.展开更多
Four common oil analysis techniques, including the ferrography analysis (FA), the spectrometric oil analysis (SOA), the particle count analysis (PCA), and the oil quality testing (OQT), are used to implement t...Four common oil analysis techniques, including the ferrography analysis (FA), the spectrometric oil analysis (SOA), the particle count analysis (PCA), and the oil quality testing (OQT), are used to implement the military aeroengine wear fault diagnosis during the test drive process. To improve the precision and the reliability of the diagnosis, the aeroengine wear fault fusion diagnosis method based on the neural networks (NN) and the Dempster-Shafter (D-S) evidence theory is proposed. Firstly, according to the standard value of the wear limit, original data are pre-processed into Boolean values. Secondly, sub-NNs are established to perform the single diagnosis, and their training samples are dependent on experiences from experts. After each sub-NN is trained, diagnosis results are obtained. Thirdly, the diagnosis results of each sub-NN are considered as the basic probability allocation value to faults. The improved D-S evidence theory is applied to the fusion diagnosis, and the final fusion results are obtained. Finally, the method is verified by a diagnosis example.展开更多
The fault diagnosis model for FMS based on multi layer feedforward neural networks was discussed An improved BP algorithm,the tactic of initial value selection based on genetic algorithm and the method of network st...The fault diagnosis model for FMS based on multi layer feedforward neural networks was discussed An improved BP algorithm,the tactic of initial value selection based on genetic algorithm and the method of network structure optimization were presented for training this model ANN(artificial neural network)fault diagnosis model for the robot in FMS was made by the new algorithm The result is superior to the rtaditional algorithm展开更多
OBJECTIVE To analyze the clinical manifestations, neuroimaging and pathological characteristics of primary central nervous system lymphoma (PCNSL) with a normal immunity, and to explore the methods of treatment and ...OBJECTIVE To analyze the clinical manifestations, neuroimaging and pathological characteristics of primary central nervous system lymphoma (PCNSL) with a normal immunity, and to explore the methods of treatment and diagnosis. METHODS The clinical, laboratory, imaging data and pathological findings and therapeutic efficacy of 31 cases with pathologically proved PCNSL, during a period from July 1995 to June 2006, were analyzed retrospectively. The method of surgery, used in combination with chemotherapy and radiotherapy, was evaluated in 18 cases versus a simple surgical procedure used in 5. Among the total cases, a CHOP regimen was employed in 11 and Teniposide (VM26) plus Semustine (me-CCUN) was used in 7 cases. RESULTS PCNSL had a variety of clinical features, so that its misdiagnosis rate was high. The main clinical findings of PCNSL included intracranial hypertension and (focal) neurologic impairment. No positive result was found in the CSF cellular examination. All of the 31 cases were B-cell lymphoma. Twenty-four of the 31 cases were followed-up, with a follow-up period from 6 to 98 months. The median period of survival of the group who underwent surgery in combination with chemotherapy and radiotherapy was 20 months, while the group with simple surgical therapy was 10 months. CONCLUSION Specific clinical manifestations were usually absent in the patients with PCNSL, giving an uncertain preoperative diagnosis and a poor prognosis. Pathological examination is the only reliable method for a final diagnosis of the disease. The main objective of surgical therapy is to relieve the intracranial hypertension caused by the tumor. Recurrence may occur in a short period following the simple operation. Therefore combined therapy, i.e. surgery plus additional radiotherapy and chemotherapy, should be adopted. This is the key point for extending survival time and improving the quality of life.展开更多
This paper proposes a Fuzzy Neural Network (FNN) model, which uses a propagation algorithm. A logical operation is defined by a set of weights which are independent of inputs. The realization of the basic And,Or and N...This paper proposes a Fuzzy Neural Network (FNN) model, which uses a propagation algorithm. A logical operation is defined by a set of weights which are independent of inputs. The realization of the basic And,Or and Negation fuzzy logical operations is shown by the fuzzy neuron. A example in fault diagnosis is put forward and the result witnesses some effectiveness of the new FNN model.展开更多
Effective methods of enhancing the fault-tolerance property are proposed for two kinds of associative memory (AM) neural network (NN) used in high voltage transmission line fault diagnosis. For feedforward NN (FNN),t...Effective methods of enhancing the fault-tolerance property are proposed for two kinds of associative memory (AM) neural network (NN) used in high voltage transmission line fault diagnosis. For feedforward NN (FNN),the conception of 'fake attaction region' is presented to expand the attraction region artificially,and for the feedback Hopfield bidirectional AM NN (BAM-NN),the measure to add redundant neurons is taken to enhance NN's memory capacity and fault-tolerance property. Study results show that the NNs built not only can complete fault diagnosis correctly but also have fairly high fault-tolerance ability for disturbed input information sequence. Moreover FNN is a more convenient and effective method of solving the problem of power system fault diagnosis.展开更多
At present, multi-se nsor fusion is widely used in object recognition and classification, since this technique can efficiently improve the accuracy and the ability of fault toleranc e. This paper describes a multi-se...At present, multi-se nsor fusion is widely used in object recognition and classification, since this technique can efficiently improve the accuracy and the ability of fault toleranc e. This paper describes a multi-sensor fusion system, which is model-based and used for rotating mechanical failure diagnosis. In the data fusion process, the fuzzy neural network is selected and used for the data fusion at report level. By comparing the experimental results of fault diagnoses based on fusion data wi th that on original separate data,it is shown that the former is more accurate than the latter.展开更多
文摘Aiming at various faults in an air conditioning system,the fault characteristics are analyzed.The influence of the faults on the energy consumption and thermal comfort of the system are also discussed.The simulation results show that the measurement faults of the supply air temperature can lead to the increase in energy consumption.According to the fault characteristics,a data-driven method based on a neural network is presented to detect and diagnose the faults of air handling units.First,the historical data are selected to train the neural network so that it can recognize and predict the operation of the system.Then,the faults can be diagnosed by calculating the relative errors denoting the difference between the measuring values and the prediction outputs.Finally,the fault diagnosis strategy using the neural network is validated by using a simulator based on the TRNSYS platform.The results show that the neural network can diagnose different faults of the temperature,the flow rate and the pressure sensors in the air conditioning system.
基金The National Natural Science Foundation of China(No.50378029)
文摘In order to investigate the leak detection strategy of a heating network,a space-based simulation mathematical model for the heating network under leakage conditions is built by graph theory.The pressure changes of all the nodes in the heating network are obtained from node leak and pipe leak conditions.Then,a leakage diagnosis system based on the back propagation(BP)neural network is established.This diagnosis system can predict the leakage pipe by collecting the pressure change data of the monitoring points,which can preliminary estimate the leak location.The usefulness of this system is proved by an example.The experimental results show that the forecast accuracy by this diagnosis system can reach 100%.
文摘Traditional scheduled maintenance systems are costly, labor intensive, and typically provide noncomprehensive detection and diagnosis of engine faults. The engine monitoring system (EMS) on modern aircrafts has the potential to provide maintenance personnel with valuable information for detecting and diagnosing engine faults. In this paper, an RBF neural network approach is applied to aeroengine gas path fault diagnosis. It can detect multiple faults and quantify the amount of deterioration of the various engine components as a function of measured parameters. The results obtained demonstrate that the accuracy of diagnosis is consistent with practical requirements. The approach takes advantage of the nonlinear mapping feature of neural networks to capture the appropriate characteristics of an aeroengine. The methodology is generic and applicable to other similar plants having high complexity.
文摘Four common oil analysis techniques, including the ferrography analysis (FA), the spectrometric oil analysis (SOA), the particle count analysis (PCA), and the oil quality testing (OQT), are used to implement the military aeroengine wear fault diagnosis during the test drive process. To improve the precision and the reliability of the diagnosis, the aeroengine wear fault fusion diagnosis method based on the neural networks (NN) and the Dempster-Shafter (D-S) evidence theory is proposed. Firstly, according to the standard value of the wear limit, original data are pre-processed into Boolean values. Secondly, sub-NNs are established to perform the single diagnosis, and their training samples are dependent on experiences from experts. After each sub-NN is trained, diagnosis results are obtained. Thirdly, the diagnosis results of each sub-NN are considered as the basic probability allocation value to faults. The improved D-S evidence theory is applied to the fusion diagnosis, and the final fusion results are obtained. Finally, the method is verified by a diagnosis example.
文摘The fault diagnosis model for FMS based on multi layer feedforward neural networks was discussed An improved BP algorithm,the tactic of initial value selection based on genetic algorithm and the method of network structure optimization were presented for training this model ANN(artificial neural network)fault diagnosis model for the robot in FMS was made by the new algorithm The result is superior to the rtaditional algorithm
文摘OBJECTIVE To analyze the clinical manifestations, neuroimaging and pathological characteristics of primary central nervous system lymphoma (PCNSL) with a normal immunity, and to explore the methods of treatment and diagnosis. METHODS The clinical, laboratory, imaging data and pathological findings and therapeutic efficacy of 31 cases with pathologically proved PCNSL, during a period from July 1995 to June 2006, were analyzed retrospectively. The method of surgery, used in combination with chemotherapy and radiotherapy, was evaluated in 18 cases versus a simple surgical procedure used in 5. Among the total cases, a CHOP regimen was employed in 11 and Teniposide (VM26) plus Semustine (me-CCUN) was used in 7 cases. RESULTS PCNSL had a variety of clinical features, so that its misdiagnosis rate was high. The main clinical findings of PCNSL included intracranial hypertension and (focal) neurologic impairment. No positive result was found in the CSF cellular examination. All of the 31 cases were B-cell lymphoma. Twenty-four of the 31 cases were followed-up, with a follow-up period from 6 to 98 months. The median period of survival of the group who underwent surgery in combination with chemotherapy and radiotherapy was 20 months, while the group with simple surgical therapy was 10 months. CONCLUSION Specific clinical manifestations were usually absent in the patients with PCNSL, giving an uncertain preoperative diagnosis and a poor prognosis. Pathological examination is the only reliable method for a final diagnosis of the disease. The main objective of surgical therapy is to relieve the intracranial hypertension caused by the tumor. Recurrence may occur in a short period following the simple operation. Therefore combined therapy, i.e. surgery plus additional radiotherapy and chemotherapy, should be adopted. This is the key point for extending survival time and improving the quality of life.
文摘This paper proposes a Fuzzy Neural Network (FNN) model, which uses a propagation algorithm. A logical operation is defined by a set of weights which are independent of inputs. The realization of the basic And,Or and Negation fuzzy logical operations is shown by the fuzzy neuron. A example in fault diagnosis is put forward and the result witnesses some effectiveness of the new FNN model.
文摘Effective methods of enhancing the fault-tolerance property are proposed for two kinds of associative memory (AM) neural network (NN) used in high voltage transmission line fault diagnosis. For feedforward NN (FNN),the conception of 'fake attaction region' is presented to expand the attraction region artificially,and for the feedback Hopfield bidirectional AM NN (BAM-NN),the measure to add redundant neurons is taken to enhance NN's memory capacity and fault-tolerance property. Study results show that the NNs built not only can complete fault diagnosis correctly but also have fairly high fault-tolerance ability for disturbed input information sequence. Moreover FNN is a more convenient and effective method of solving the problem of power system fault diagnosis.
文摘At present, multi-se nsor fusion is widely used in object recognition and classification, since this technique can efficiently improve the accuracy and the ability of fault toleranc e. This paper describes a multi-sensor fusion system, which is model-based and used for rotating mechanical failure diagnosis. In the data fusion process, the fuzzy neural network is selected and used for the data fusion at report level. By comparing the experimental results of fault diagnoses based on fusion data wi th that on original separate data,it is shown that the former is more accurate than the latter.