伴随着新能源产业的飞速发展,锂离子动力电池作为一种高效的储能方式,已成为电动汽车的重要组成部分。在电池管理系统的功能中,电池的高精度建模至关重要。在实际应用中,电池不是一个线性系统,其输入和输出由于外部扰动等原因表现出非...伴随着新能源产业的飞速发展,锂离子动力电池作为一种高效的储能方式,已成为电动汽车的重要组成部分。在电池管理系统的功能中,电池的高精度建模至关重要。在实际应用中,电池不是一个线性系统,其输入和输出由于外部扰动等原因表现出非线性特征,从而直接影响参数识别效果,进而影响模型精度。鉴于此,本文对锂离子动力电池进行了Hammerstein-ARMAX(Autoregressive MovingAverage with Extra Input)模型构建,并对模型参数的估计方法进行研究,旨在提高模型的准确性。实验结果表明了该方法的有效性。展开更多
为提高采煤工作面涌水量预测准确度,收集大量工作面涌水量观测数据进行整理、统计、分析,将涌水量稳定性、周期性和季节性特征考虑在内,提出1种基于数据驱动的完全自适应模态分解算法(CEEMDAN)和改进的混合时间序列模型工作面涌水量预...为提高采煤工作面涌水量预测准确度,收集大量工作面涌水量观测数据进行整理、统计、分析,将涌水量稳定性、周期性和季节性特征考虑在内,提出1种基于数据驱动的完全自适应模态分解算法(CEEMDAN)和改进的混合时间序列模型工作面涌水量预测方法。该方法利用CEEMDAN处理涌水量数据,构建麻雀搜索算法(SSA)优化的长短期记忆网络(LSTM)和自回归移动平均模型(ARIMA)并行级联而成的混合时间序列模型对工作面涌水量进行预测。研究结果表明:该模型预测结果与真实数据相差更小,平均绝对误差为6.36 m 3/h,均方根误差为10.6 m 3/h,模型拟合系数为0.95,更适用于工作面涌水量预测。研究结果可为矿井工作面涌水量预测及防控提供参考。展开更多
文摘伴随着新能源产业的飞速发展,锂离子动力电池作为一种高效的储能方式,已成为电动汽车的重要组成部分。在电池管理系统的功能中,电池的高精度建模至关重要。在实际应用中,电池不是一个线性系统,其输入和输出由于外部扰动等原因表现出非线性特征,从而直接影响参数识别效果,进而影响模型精度。鉴于此,本文对锂离子动力电池进行了Hammerstein-ARMAX(Autoregressive MovingAverage with Extra Input)模型构建,并对模型参数的估计方法进行研究,旨在提高模型的准确性。实验结果表明了该方法的有效性。
文摘为提高采煤工作面涌水量预测准确度,收集大量工作面涌水量观测数据进行整理、统计、分析,将涌水量稳定性、周期性和季节性特征考虑在内,提出1种基于数据驱动的完全自适应模态分解算法(CEEMDAN)和改进的混合时间序列模型工作面涌水量预测方法。该方法利用CEEMDAN处理涌水量数据,构建麻雀搜索算法(SSA)优化的长短期记忆网络(LSTM)和自回归移动平均模型(ARIMA)并行级联而成的混合时间序列模型对工作面涌水量进行预测。研究结果表明:该模型预测结果与真实数据相差更小,平均绝对误差为6.36 m 3/h,均方根误差为10.6 m 3/h,模型拟合系数为0.95,更适用于工作面涌水量预测。研究结果可为矿井工作面涌水量预测及防控提供参考。