Fire is an important ecological factor and what constitutes appropriate fire management is much debated in the US and elsewhere. The role of fire as a source of greenhouse gases has been intensively investigated, but ...Fire is an important ecological factor and what constitutes appropriate fire management is much debated in the US and elsewhere. The role of fire as a source of greenhouse gases has been intensively investigated, but less is known about the production rate of the solid black carbon residue from fires. Black carbon accumulates in soil as it has longer turnover times than plant residues. To understand the significance of black carbon production during wildfire, we quantified black carbon using hydropyrolysis in O and A horizons before and after a prescribed bum at four sites in the New Jersey Pine Barrens forest in the North-Eastern US. Black carbon was found in both O- and A-horizons at all investigated sites, stocks in the range of 61.31-168.15 g m^-2 in the O-horizon and 169.59-425.25 g m^-2 in the A-horizon. Total black carbon stocks did not increase following the fire suggesting that either black carbon production in fires may be small compared to the variability, or that equivalent amounts of black carbon formed in previous fires may have been consumed in the fire. The study raises questions about how black carbon production and consumption in ftres can be quantified separately.展开更多
Soil harbors remarkably stabilize bacterial communities at the phylum level. However, no two soils have exactly the same structure of bacterial phyla. The structure of microbial community is strongly influenced by the...Soil harbors remarkably stabilize bacterial communities at the phylum level. However, no two soils have exactly the same structure of bacterial phyla. The structure of microbial community is strongly influenced by the type of land-use through changes in soil attributes. Using high-throughput pyrosequencing and quantitative polymerase chain reaction techniques, soil microbial community structures were investigated along a land-use gradient of 100- and 27-year farmlands, a 33-year Pinus forest, a 28-year poplar forest, and a 21-year shrubland, as well as a native desert from which all cultivated systems were converted. The results revealed that the dominant phylotypes in the native soil comprised primarily of Alphaproteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes, accounting for 〉 71.4% of the total bacterial 16S rRNA sequence reads. Changes in land-use led to a significant decrease in these dominant phylotypes down to 33.4%. In contrast, the phylotypes with low abundance, such as Acidobaeteria, Chloroflexi, Nitrospira, and Gammaproteobaeteria, increased sharply from 4.5%-5.9% in the native soil to 20.9% 30.2% of the total 16S rRNA gene sequences in the cultivated soils except for the soil from the shrubland. These contrasting changes in the major taxa appear to be correlated with the changes in soil attributes. For instance, bacterial and archaeal amoA genes were found to be 960- and 3 800-fold more abundant in the soil from the 100-year farmland than the native soil. The changes in numerically less dominant nitrifying phylotypes are consistent with soil inorganic nitrogen dynamics. Quantification of the 16S rRNA genes demonstrated that bacteria and archaea were about two to three orders of magnitude more abundant in the cultivated soil than in the native soil. Hence, land-use type affects the soil bacterial community structure, which has profound consequences on ecosystem function.展开更多
文摘Fire is an important ecological factor and what constitutes appropriate fire management is much debated in the US and elsewhere. The role of fire as a source of greenhouse gases has been intensively investigated, but less is known about the production rate of the solid black carbon residue from fires. Black carbon accumulates in soil as it has longer turnover times than plant residues. To understand the significance of black carbon production during wildfire, we quantified black carbon using hydropyrolysis in O and A horizons before and after a prescribed bum at four sites in the New Jersey Pine Barrens forest in the North-Eastern US. Black carbon was found in both O- and A-horizons at all investigated sites, stocks in the range of 61.31-168.15 g m^-2 in the O-horizon and 169.59-425.25 g m^-2 in the A-horizon. Total black carbon stocks did not increase following the fire suggesting that either black carbon production in fires may be small compared to the variability, or that equivalent amounts of black carbon formed in previous fires may have been consumed in the fire. The study raises questions about how black carbon production and consumption in ftres can be quantified separately.
基金Supported by the National Natural Science Foundation of China (No.91025021)the Knowledge Innovation Programs of the Chinese Academy of Sciences (Nos.KSCX2-EW-G-16-02 and KSCX2-YW-G-074-02)the E-Science Program of the Chinese Academy of Sciences (No.INFO-115-D01-Z006)
文摘Soil harbors remarkably stabilize bacterial communities at the phylum level. However, no two soils have exactly the same structure of bacterial phyla. The structure of microbial community is strongly influenced by the type of land-use through changes in soil attributes. Using high-throughput pyrosequencing and quantitative polymerase chain reaction techniques, soil microbial community structures were investigated along a land-use gradient of 100- and 27-year farmlands, a 33-year Pinus forest, a 28-year poplar forest, and a 21-year shrubland, as well as a native desert from which all cultivated systems were converted. The results revealed that the dominant phylotypes in the native soil comprised primarily of Alphaproteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes, accounting for 〉 71.4% of the total bacterial 16S rRNA sequence reads. Changes in land-use led to a significant decrease in these dominant phylotypes down to 33.4%. In contrast, the phylotypes with low abundance, such as Acidobaeteria, Chloroflexi, Nitrospira, and Gammaproteobaeteria, increased sharply from 4.5%-5.9% in the native soil to 20.9% 30.2% of the total 16S rRNA gene sequences in the cultivated soils except for the soil from the shrubland. These contrasting changes in the major taxa appear to be correlated with the changes in soil attributes. For instance, bacterial and archaeal amoA genes were found to be 960- and 3 800-fold more abundant in the soil from the 100-year farmland than the native soil. The changes in numerically less dominant nitrifying phylotypes are consistent with soil inorganic nitrogen dynamics. Quantification of the 16S rRNA genes demonstrated that bacteria and archaea were about two to three orders of magnitude more abundant in the cultivated soil than in the native soil. Hence, land-use type affects the soil bacterial community structure, which has profound consequences on ecosystem function.