This paper mainly discusses the Si/Al molar ratio, RO/R2O molar ratio, Fe content, glazing and firing system on the thickness of Longquan Celadon pink coloring effects, and using a colorimeter, field emission scanning...This paper mainly discusses the Si/Al molar ratio, RO/R2O molar ratio, Fe content, glazing and firing system on the thickness of Longquan Celadon pink coloring effects, and using a colorimeter, field emission scanning electron microscopy were used to analyze better experimental sample microstructure and color and so on. We explored the Longquan Celadon of pink coloration mechanism.展开更多
This paper mainly discusses the Si/A1 molar ratio, RO/R20 molar ratio, Fe content, glazing and firing system on the thickness of Longquan Celadon pink coloring effects, and using a colorimeter, field emission scanning...This paper mainly discusses the Si/A1 molar ratio, RO/R20 molar ratio, Fe content, glazing and firing system on the thickness of Longquan Celadon pink coloring effects, and using a colorimeter, field emission scanning electron microscopy were used to analyze better experimental sample microstructure and color and so on. We explored the Longquan Celadon of pink coloration mechanism.展开更多
Asphaltene-ceramic composite membranes were fabricated from ceramic supports and an asphaltene component, which was obtained from the separation of coal to give a kind of new carbonaceous precursor material. Using SEM...Asphaltene-ceramic composite membranes were fabricated from ceramic supports and an asphaltene component, which was obtained from the separation of coal to give a kind of new carbonaceous precursor material. Using SEM and thermogravimetric analysis to measure the microstructure and properties of the asphaltene component allowed the porosity, permeability, and retention ratios to be determined. The results show that the asphaltene component can be regarded as a good carbon membrane precursor material because of its high carbon content and strong bonding capacity. When ceramic supports are impregnated with asphaltene colloid the asphaltene easily combines with the support surface and forms a good carbonaceous film after carbonization. Little of the asphaltene component permeates into the internal pores of the ceramic support. Although the number of coats applied to the substrate had little affect on the porosity of the asphaltene-ceramic composite membranes the permeability varied depend- ing upon the number of times the substrate was treated. The way bubbles escape from the film, and the phenomenon of coalescence, as affected by different film thicknesses also seem closely related to the number of coats. A composite membrane carbonized at a final temperature of 600℃ is relatively dense and the permeability of Fe(OH)3 colloid through it is very low. A membrane fired at 800℃ is porous and its permeability and retention of Fe(OH)3 colloid are 88 L/(m2 h MPa) and 85.3%, respectively when the trans-membrane pressure is 0.22 MPa.展开更多
文摘This paper mainly discusses the Si/Al molar ratio, RO/R2O molar ratio, Fe content, glazing and firing system on the thickness of Longquan Celadon pink coloring effects, and using a colorimeter, field emission scanning electron microscopy were used to analyze better experimental sample microstructure and color and so on. We explored the Longquan Celadon of pink coloration mechanism.
文摘This paper mainly discusses the Si/A1 molar ratio, RO/R20 molar ratio, Fe content, glazing and firing system on the thickness of Longquan Celadon pink coloring effects, and using a colorimeter, field emission scanning electron microscopy were used to analyze better experimental sample microstructure and color and so on. We explored the Longquan Celadon of pink coloration mechanism.
基金the National Natural Science Foundation of China (Nos.50874108 and 50921002)the Natural Science Foundation of Jiangsu Province (No.BK2007038)+2 种基金the Fundamental Research Funds for the Central Universities (No.2010LKHX01)the Open Fund of Key Laboratory of Coal ProcessClean Utilization of Ministry of Education (No.CPEUKF08-06)
文摘Asphaltene-ceramic composite membranes were fabricated from ceramic supports and an asphaltene component, which was obtained from the separation of coal to give a kind of new carbonaceous precursor material. Using SEM and thermogravimetric analysis to measure the microstructure and properties of the asphaltene component allowed the porosity, permeability, and retention ratios to be determined. The results show that the asphaltene component can be regarded as a good carbon membrane precursor material because of its high carbon content and strong bonding capacity. When ceramic supports are impregnated with asphaltene colloid the asphaltene easily combines with the support surface and forms a good carbonaceous film after carbonization. Little of the asphaltene component permeates into the internal pores of the ceramic support. Although the number of coats applied to the substrate had little affect on the porosity of the asphaltene-ceramic composite membranes the permeability varied depend- ing upon the number of times the substrate was treated. The way bubbles escape from the film, and the phenomenon of coalescence, as affected by different film thicknesses also seem closely related to the number of coats. A composite membrane carbonized at a final temperature of 600℃ is relatively dense and the permeability of Fe(OH)3 colloid through it is very low. A membrane fired at 800℃ is porous and its permeability and retention of Fe(OH)3 colloid are 88 L/(m2 h MPa) and 85.3%, respectively when the trans-membrane pressure is 0.22 MPa.