A multidisciplinary optimization was conducted to simultaneously improve the efficiency and reduce the radial force of a single-channel pump for wastewater treatment. A hybrid multi-objective evolutionary algorithm wa...A multidisciplinary optimization was conducted to simultaneously improve the efficiency and reduce the radial force of a single-channel pump for wastewater treatment. A hybrid multi-objective evolutionary algorithm was coupled with a surrogate model to optimize the geometry of the single-channel pump volute. Steady and unsteady Reynolds-averaged Navier-Stokes equations with a shear stress transport turbulence model were discretized using finite volume approximations and were then solved on tetrahedral grids to analyze the flow in the single-channel pump. The three objective functions represented the total efficiency, the sweep area of the radial force during one revolution, and the distance of the mass center of sweep area from the origin while the two design variables were related to the cross-sectional area of the internal flow of the volute. Latin hypercube sampling was employed to generate twelve design points within the design space, and response surface approximation models were constructed as surrogate models for the objectives based on the values of the objective function at the given design points. A fast non-dominated sorting genetic algorithm for local search was coupled with the surrogate models to determine the global Pareto-optimal solutions. The trade-off between the objectives was determined and was described in terms of the Pareto-optimal solutions. The results of the multi-objective optimization showed that the optimum design simultaneously improved the efficiency and reduced the radial force relative to those of the reference design.展开更多
A lot of phenomena related to propagating various waves are seen when the high-speed train goes through the tunnel,the gas pipeline is broken due to an accident or the air brake of the wagon operates.For instance,a co...A lot of phenomena related to propagating various waves are seen when the high-speed train goes through the tunnel,the gas pipeline is broken due to an accident or the air brake of the wagon operates.For instance,a compression wave generated ahead of a high-speed train entering a tunnel propagates to the tunnel exit and spouts as a micro pressure wave,which causes an exploding sound.In order to estimate the magnitude correctly,the mechanism of the attenuation and distortion of a compression wave propagating along a very long tunnel must be understood and the experimental information on these phenomena is required.An experimental investigation is carried out to clarify the attenuation and distortion of the propagating compression wave in a very long tube.Experimental results show that the strength of a compression wave decreases with distance.The attenuation and distortion of compression waves are affected by the initial waveform of the compression wave and by the unsteady boundary layer induced by the propagating wave.The shape of a compression wave becomes different with the propagating distance;that is,a shock wave appears just head of a wavefront and an overshoot on pressure distribution is observed behind a shock wave due to the transition of the unsteady boundary layer.展开更多
文摘A multidisciplinary optimization was conducted to simultaneously improve the efficiency and reduce the radial force of a single-channel pump for wastewater treatment. A hybrid multi-objective evolutionary algorithm was coupled with a surrogate model to optimize the geometry of the single-channel pump volute. Steady and unsteady Reynolds-averaged Navier-Stokes equations with a shear stress transport turbulence model were discretized using finite volume approximations and were then solved on tetrahedral grids to analyze the flow in the single-channel pump. The three objective functions represented the total efficiency, the sweep area of the radial force during one revolution, and the distance of the mass center of sweep area from the origin while the two design variables were related to the cross-sectional area of the internal flow of the volute. Latin hypercube sampling was employed to generate twelve design points within the design space, and response surface approximation models were constructed as surrogate models for the objectives based on the values of the objective function at the given design points. A fast non-dominated sorting genetic algorithm for local search was coupled with the surrogate models to determine the global Pareto-optimal solutions. The trade-off between the objectives was determined and was described in terms of the Pareto-optimal solutions. The results of the multi-objective optimization showed that the optimum design simultaneously improved the efficiency and reduced the radial force relative to those of the reference design.
文摘A lot of phenomena related to propagating various waves are seen when the high-speed train goes through the tunnel,the gas pipeline is broken due to an accident or the air brake of the wagon operates.For instance,a compression wave generated ahead of a high-speed train entering a tunnel propagates to the tunnel exit and spouts as a micro pressure wave,which causes an exploding sound.In order to estimate the magnitude correctly,the mechanism of the attenuation and distortion of a compression wave propagating along a very long tunnel must be understood and the experimental information on these phenomena is required.An experimental investigation is carried out to clarify the attenuation and distortion of the propagating compression wave in a very long tube.Experimental results show that the strength of a compression wave decreases with distance.The attenuation and distortion of compression waves are affected by the initial waveform of the compression wave and by the unsteady boundary layer induced by the propagating wave.The shape of a compression wave becomes different with the propagating distance;that is,a shock wave appears just head of a wavefront and an overshoot on pressure distribution is observed behind a shock wave due to the transition of the unsteady boundary layer.