期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Novel biomarkers for cardiovascular risk prediction 被引量:21
1
作者 Juan WANG Guo-Juan TAN +3 位作者 Li-Na HAN Yong-Yi BAI Miao HE Hong-Bin LIU 《Journal of Geriatric Cardiology》 SCIE CAS CSCD 2017年第2期135-150,共16页
Cardiovascular disease (CVD) is the leading cause of death and disability worldwide. The primary prevention of CVD is dependent upon the ability to identify high-risk individuals long before the development of overt... Cardiovascular disease (CVD) is the leading cause of death and disability worldwide. The primary prevention of CVD is dependent upon the ability to identify high-risk individuals long before the development of overt events. This highlights the need for accurate risk strati- fication. An increasing number of novel biomarkers have been identified to predict cardiovascular events. Biomarkers play a critical role in the definition, prognostication, and decision-making regarding the management of cardiovascular events. This review focuses on a variety of promising biomarkers that provide diagnostic and prognostic information. The myocardial tissue-specific biomarker cardiac troponin, high- sensitivity assays for cardiac troponin, and heart-type fatty acid binding proteinall help diagnose myocardial infarction (MI) in the early hours following symptoms. Inflammatory markers such as growth differentiation factor-15, high-sensitivity C-reactive protein, fibrinogen, and uric acid predict MI and death. Pregnancy-associated plasma protein A, myeloperoxidase, and matrix metalloproteinases predict the risk of acute cor- onary syndrome. Lipoprotein-associated phospholipase A2 and secretory phospholipase A2 predict incident and recurrent cardiovascular events. Finally, elevated natriuretic peptides, ST2, endothelin-1, mid-regional-pro-adrenomedullin, copeptin, and galectin-3 have all been well validated to predict death and heart failure following a MI and provide risk stratification information for heart failure. Rapidly develop- ing new areas, such as assessment ofmicro-RNA, are also explored. All the biomarkers reflect different aspects of the development ofather- osclerosis. 展开更多
关键词 BIOMARKER Cardiovascular disease PREDICTION Risk stratification
下载PDF
抗日战争时期“自觉图存”的民俗学术实践——以重庆中国民俗学会为中心的讨论 被引量:4
2
作者 王丹 张瑜 《民俗研究》 CSSCI 北大核心 2020年第6期72-82,158,共12页
抗日战争时期国统区重庆中国民俗学会,继承和延续了20世纪30年代重庆地区中国民俗学会四川分会,以及杭州中国民俗学会的学术传统和社会责任。作为特殊时期、特定地区的民俗"遗珠",重庆中国民俗学会在学术研究、学科建设以及... 抗日战争时期国统区重庆中国民俗学会,继承和延续了20世纪30年代重庆地区中国民俗学会四川分会,以及杭州中国民俗学会的学术传统和社会责任。作为特殊时期、特定地区的民俗"遗珠",重庆中国民俗学会在学术研究、学科建设以及组织建构等方面成绩斐然。重庆中国民俗学会组织中关于"中国"概念的出现和沿用,意味着学会从一个学术型机构,向具有代表性的社会型团体过渡。20世纪40年代重庆中国民俗学会的创建及发展,体现了中国民俗学的强韧生命力,标志着中国民俗学从自发的研究到"自觉图存"的学术转向。 展开更多
关键词 重庆中国民俗学会 民俗学史分期 《民俗周刊》 《风物志》
原文传递
Dynamic optimal strategy for monitoring disease recurrence 被引量:1
3
作者 LI Hong GATSONIS Constantine 《Science China Mathematics》 SCIE 2012年第8期1565-1582,共18页
Surveillance to detect cancer recurrence is an important part of care for cancer survivors.In this paper we discuss the design of optimal strategies for early detection of disease recurrence based on each patient'... Surveillance to detect cancer recurrence is an important part of care for cancer survivors.In this paper we discuss the design of optimal strategies for early detection of disease recurrence based on each patient's distinct biomarker trajectory and periodically updated risk estimated in the setting of a prospective cohort study.We adopt a latent class joint model which considers a longitudinal biomarker process and an event process jointly,to address heterogeneity of patients and disease,to discover distinct biomarker trajectory patterns,to classify patients into different risk groups,and to predict the risk of disease recurrence.The model is used to develop a monitoring strategy that dynamically modifies the monitoring intervals according to patients' current risk derived from periodically updated biomarker measurements and other indicators of disease spread.The optimal biomarker assessment time is derived using a utility function.We develop an algorithm to apply the proposed strategy to monitoring of new patients after initial treatment.We illustrate the models and the derivation of the optimal strategy using simulated data from monitoring prostate cancer recurrence over a 5-year period. 展开更多
关键词 biomarker trajectory cancer recurrence surveillance latent class model optimal strategy time-dependent hazard
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部