The temporal dynamics of the biomass, as well as the carbon (C), nitrogen (N), phosphorus (P) concentrations and accumulation contents, in above- and below-ground vegetation components were determined in the alp...The temporal dynamics of the biomass, as well as the carbon (C), nitrogen (N), phosphorus (P) concentrations and accumulation contents, in above- and below-ground vegetation components were determined in the alpine steppe vegetation of Northern Tibet during the growing season of 2OLO. The highest levels of total biomass (311.68 g m-2), total C (115.95 g m-2), total N (2.60 g m-2), and total P (0.90 g m-2) accumulation contents were obtained in August in 2010. Further, biomass and nutrient stocks in the below-ground components were higher than those of the above-ground components. The dominant species viz., Stipa purpurea and Carex moorcrofli had lower biomass and C, N, P accumulations than the companion species which including Oxytropis. spp., Artemisia capillaris Thunb., Aster tataricus L., and SO on.展开更多
The distribution and variations of permafrost in the Xidatan region, the northern permafrost boundary of the Qinghai-Tibet Plateau, were examined and analyzed using ground penetrating radar(GPR), borehole drilling, an...The distribution and variations of permafrost in the Xidatan region, the northern permafrost boundary of the Qinghai-Tibet Plateau, were examined and analyzed using ground penetrating radar(GPR), borehole drilling, and thermal monitoring data. Results from GPR profiles together with borehole verification indicate that the lowest elevation limit of permafrost occurrence is 4369 m above sea level in 2012. Compared to previous studies, the maximal rise of permafrost limit is 28 m from 1975 to 2012. The total area of permafrost in the study region has been decreased by 13.8%. One of the two previously existed permafrost islands has disappeared and second one has reduced by 76% in area during the past ~40 years. In addition, the ground temperature in the Xidatan region has increased from 2012 to 2016, with a mean warming rate of ~0.004℃ a^(-1) and ~0.003℃ a^(-1) at the depths of 6 and 15 m, respectively. The rising of permafrost limit in the Xidatan region is mainly due to globalwarming. However, some non-climatic factors such as hydrologic processes and anthropic disturbances have also induced permafrost degradation. If the air temperature continues to increase, the northern permafrost boundary in the Qinghai-Tibet Plateau may continue rising in the future.展开更多
The Tibetan Plateau(TP)is an area sensitive to climate change,where the ozone distribution affects the atmospheric environment of the TP and its surrounding regions.The relatively low total column ozone over the TP in...The Tibetan Plateau(TP)is an area sensitive to climate change,where the ozone distribution affects the atmospheric environment of the TP and its surrounding regions.The relatively low total column ozone over the TP in boreal summer and its spatiotemporal variations have received extensive attention.In this study,five-year balloon-borne measurements of ozone over Lhasa in boreal summer are used to investigate the influences of the apparent heat source(Q1)on the ozone vertical structure over the plateau.The mechanisms for the above processes are also explored.The results show that the tropospheric ozone mixing ratio over Lhasa decreases when the total atmospheric Q1 in the troposphere over the TP is relatively high.Strengthened ascending motions are accompanied by enhanced Q1 over the main TP region.Consequently,the tropospheric ozone mixing ratio over Lhasa decreases when Q1 is higher in summer,which is attributed to the upward transport of the ozone-poor surface air.展开更多
基金funded by One Hundred Young Persons Project of Institute of Mountain Hazards and Environment (No.SDSQB-2010-02)the National Natural Science Foundation of China (No.41001177)Knowledge Innovation Program of the Chinese Academy of Sciences (Nos.KZCX2-YW-QN31,KZCX2-XB3-08)
文摘The temporal dynamics of the biomass, as well as the carbon (C), nitrogen (N), phosphorus (P) concentrations and accumulation contents, in above- and below-ground vegetation components were determined in the alpine steppe vegetation of Northern Tibet during the growing season of 2OLO. The highest levels of total biomass (311.68 g m-2), total C (115.95 g m-2), total N (2.60 g m-2), and total P (0.90 g m-2) accumulation contents were obtained in August in 2010. Further, biomass and nutrient stocks in the below-ground components were higher than those of the above-ground components. The dominant species viz., Stipa purpurea and Carex moorcrofli had lower biomass and C, N, P accumulations than the companion species which including Oxytropis. spp., Artemisia capillaris Thunb., Aster tataricus L., and SO on.
基金supported by the National Natural Science Foundation of China (Grant no. 41601069) the State Key Program of National Natural Science of China (Grant No. 41730640)the Independent Project of the State Key Laboratory of Frozen Soils Engineering (SKLFSEZT-32 and SKLFSE-ZQ-37)
文摘The distribution and variations of permafrost in the Xidatan region, the northern permafrost boundary of the Qinghai-Tibet Plateau, were examined and analyzed using ground penetrating radar(GPR), borehole drilling, and thermal monitoring data. Results from GPR profiles together with borehole verification indicate that the lowest elevation limit of permafrost occurrence is 4369 m above sea level in 2012. Compared to previous studies, the maximal rise of permafrost limit is 28 m from 1975 to 2012. The total area of permafrost in the study region has been decreased by 13.8%. One of the two previously existed permafrost islands has disappeared and second one has reduced by 76% in area during the past ~40 years. In addition, the ground temperature in the Xidatan region has increased from 2012 to 2016, with a mean warming rate of ~0.004℃ a^(-1) and ~0.003℃ a^(-1) at the depths of 6 and 15 m, respectively. The rising of permafrost limit in the Xidatan region is mainly due to globalwarming. However, some non-climatic factors such as hydrologic processes and anthropic disturbances have also induced permafrost degradation. If the air temperature continues to increase, the northern permafrost boundary in the Qinghai-Tibet Plateau may continue rising in the future.
基金This research was supported by the second Tibetan Plateau Scientific Expedition and Research Program(STEP)[grant number 2019QZKK0604]the National Natural Science Foundation of China[grant numbers 91837311,41705025,and 41705021].
文摘The Tibetan Plateau(TP)is an area sensitive to climate change,where the ozone distribution affects the atmospheric environment of the TP and its surrounding regions.The relatively low total column ozone over the TP in boreal summer and its spatiotemporal variations have received extensive attention.In this study,five-year balloon-borne measurements of ozone over Lhasa in boreal summer are used to investigate the influences of the apparent heat source(Q1)on the ozone vertical structure over the plateau.The mechanisms for the above processes are also explored.The results show that the tropospheric ozone mixing ratio over Lhasa decreases when the total atmospheric Q1 in the troposphere over the TP is relatively high.Strengthened ascending motions are accompanied by enhanced Q1 over the main TP region.Consequently,the tropospheric ozone mixing ratio over Lhasa decreases when Q1 is higher in summer,which is attributed to the upward transport of the ozone-poor surface air.