Precipitation in Heilongjiang Province of China increased slightly from 1960 to 2000. Adopting the method proposed by Arthur N. Samel, we separated monsoon rainband rain and calculated the initial and final date of mo...Precipitation in Heilongjiang Province of China increased slightly from 1960 to 2000. Adopting the method proposed by Arthur N. Samel, we separated monsoon rainband rain and calculated the initial and final date of monsoon rainband of each year and each station, For the period of 1960-2000, the change of annual precipitation in Heilongjiang Province, with an increasing trend of 2.229 mm per decade, is not significant; the duration and total monsoon rain decreased significantly, with a decreasing trend of -6.9 day per decade and -17,5 mm per decade separately. That change comes from early leaving date of summer monsoon rainband for the period of 1960- 1975 and later arriving date of summer monsoon rainband for the period of 1990-2000, The weakening of summer monsoon makes ils contribution to the annual precipitation decreased significantly, with a decreasing trend of 4.4 % per decade.展开更多
As the first event of soil erosion, rain splash erosion supplies materials for subsequent transportation and en-trainment. The Loess Plateau, the southern hilly region and the Northeast China are subject to serious so...As the first event of soil erosion, rain splash erosion supplies materials for subsequent transportation and en-trainment. The Loess Plateau, the southern hilly region and the Northeast China are subject to serious soil and water loss; however, the characteristics of rain splash erosion in those regions are still unclear. The objectives of the study are to ana-lyze the characteristics of splash erosion on loess soil, red soil, purple soil and black soil, and to discuss the relationship between splash erosion and soil properties. Soil samples spatially distributed in the abovementioned regions were col-lected and underwent simulated rainfalls at a high intensity of 1.2mm/min, lasting for 5, 10, 15, and 20min, respectively. Rain splash and soil crust development were analyzed. It shows that black soil sample from Heilongjiang Province corre-sponds to the minimum splash erosion amount because it has high aggregate content, aggregate stability and organic mat-ter content. Loess soil sample from Inner Mongolia corresponds to the maximum splash erosion amount because it has high content of sand particles. Loess soil sample from Shanxi Province has relatively lower splash erosion amount be-cause it has high silt particle content and low aggregate stability easily to be disrupted under rainfalls with high intensity. Although aggregate contents of red soil and purple soil samples from Hubei and Guangdong provinces are high, the sta-bility is weak and prone to be disrupted, so the splash erosion amount is medium. Splash rate which fluctuates over time is observed because soil crust development follows a cycling processes of formation and disruption. In addition, there are two locations of soil crust development, one appears at the surface, and the other occurs at the subsurface.展开更多
Based on the data of SST and NCEP/NCAR reanalysis data, the relationship is analyzed of spring SSTA in the Kuroshio region with summer precipitation in China, summer 500 hPa field and water vapor transport, using the ...Based on the data of SST and NCEP/NCAR reanalysis data, the relationship is analyzed of spring SSTA in the Kuroshio region with summer precipitation in China, summer 500 hPa field and water vapor transport, using the methods of Morlet wave, correlation and composite analysis. The results show that annual and interdecadal change of spring SST in the Kuroshio region is distinct. Spring SST displays a significantly increasing trend and there exist different periodic oscillations in the Kuroshio region, with the 23-year periodic oscillation being the most obvious. Troughs and ridges in the mid- and higher- latitudes turn deeper in high Kuroshio SSTA years. At the same time, the western Pacific subtropical high strengthens and stretches westwards. As a result, the warm / wet air from the west of the subtropical high locates in the mid- and lower- reaches of the Yangtze River and south China and summer rainfall in the above regions increases accordingly. Composite anomalous water vapor flux fields indicate that the vapor transport from the South China Sea and western Pacific and the vapor from the north converge over the mid- and lower- reaches of the Yangtze River and south China, which results in the increase of the summer rainfall in the mid- and lower- reaches of the Yangtze River and south China. On the contrary, the summer rainfall in the mid- and lower- reaches of the Yangtze River and south China decreases correspondingly in low Kuroshio SSTA years.展开更多
文摘Precipitation in Heilongjiang Province of China increased slightly from 1960 to 2000. Adopting the method proposed by Arthur N. Samel, we separated monsoon rainband rain and calculated the initial and final date of monsoon rainband of each year and each station, For the period of 1960-2000, the change of annual precipitation in Heilongjiang Province, with an increasing trend of 2.229 mm per decade, is not significant; the duration and total monsoon rain decreased significantly, with a decreasing trend of -6.9 day per decade and -17,5 mm per decade separately. That change comes from early leaving date of summer monsoon rainband for the period of 1960- 1975 and later arriving date of summer monsoon rainband for the period of 1990-2000, The weakening of summer monsoon makes ils contribution to the annual precipitation decreased significantly, with a decreasing trend of 4.4 % per decade.
基金Under the auspices of National Natural Science Foundation of China ( No. 40471084)Innovation Program of Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (No. 066U0104SZ)State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau (No. 10501-173)
文摘As the first event of soil erosion, rain splash erosion supplies materials for subsequent transportation and en-trainment. The Loess Plateau, the southern hilly region and the Northeast China are subject to serious soil and water loss; however, the characteristics of rain splash erosion in those regions are still unclear. The objectives of the study are to ana-lyze the characteristics of splash erosion on loess soil, red soil, purple soil and black soil, and to discuss the relationship between splash erosion and soil properties. Soil samples spatially distributed in the abovementioned regions were col-lected and underwent simulated rainfalls at a high intensity of 1.2mm/min, lasting for 5, 10, 15, and 20min, respectively. Rain splash and soil crust development were analyzed. It shows that black soil sample from Heilongjiang Province corre-sponds to the minimum splash erosion amount because it has high aggregate content, aggregate stability and organic mat-ter content. Loess soil sample from Inner Mongolia corresponds to the maximum splash erosion amount because it has high content of sand particles. Loess soil sample from Shanxi Province has relatively lower splash erosion amount be-cause it has high silt particle content and low aggregate stability easily to be disrupted under rainfalls with high intensity. Although aggregate contents of red soil and purple soil samples from Hubei and Guangdong provinces are high, the sta-bility is weak and prone to be disrupted, so the splash erosion amount is medium. Splash rate which fluctuates over time is observed because soil crust development follows a cycling processes of formation and disruption. In addition, there are two locations of soil crust development, one appears at the surface, and the other occurs at the subsurface.
基金National Planning Project for the Research and Development of Key National FundamentalResearch (2004CB418303)Innovative Project for Training Post Graduates in Jiangsu Province (E30000008098-2)
文摘Based on the data of SST and NCEP/NCAR reanalysis data, the relationship is analyzed of spring SSTA in the Kuroshio region with summer precipitation in China, summer 500 hPa field and water vapor transport, using the methods of Morlet wave, correlation and composite analysis. The results show that annual and interdecadal change of spring SST in the Kuroshio region is distinct. Spring SST displays a significantly increasing trend and there exist different periodic oscillations in the Kuroshio region, with the 23-year periodic oscillation being the most obvious. Troughs and ridges in the mid- and higher- latitudes turn deeper in high Kuroshio SSTA years. At the same time, the western Pacific subtropical high strengthens and stretches westwards. As a result, the warm / wet air from the west of the subtropical high locates in the mid- and lower- reaches of the Yangtze River and south China and summer rainfall in the above regions increases accordingly. Composite anomalous water vapor flux fields indicate that the vapor transport from the South China Sea and western Pacific and the vapor from the north converge over the mid- and lower- reaches of the Yangtze River and south China, which results in the increase of the summer rainfall in the mid- and lower- reaches of the Yangtze River and south China. On the contrary, the summer rainfall in the mid- and lower- reaches of the Yangtze River and south China decreases correspondingly in low Kuroshio SSTA years.