The present study has been carried out on a total of 50 available plant species to assess their dust-capturing capacity and biochemical performances in and around open cast granite mine areas of Jhansi district and Bu...The present study has been carried out on a total of 50 available plant species to assess their dust-capturing capacity and biochemical performances in and around open cast granite mine areas of Jhansi district and Bundelkhand University campus treated as control site. Plant species existing under a polluted environment for a long time may be considered as potentially resistant species and recommended for green belt design in mining areas, especially to cope with dust pollution. Results showed the pollution level, especially of mining-originated dust particles holding capacity of leaves and effects of different biochemical parameters (Total Chlorophyll, Protein and Carotenoid) of existing plant species both from mining areas as well as from Bundelkhand University campus. Based on their performances, Tectona grandis L., Ficus hispida L., Calotropis procera Aiton., Butea monosperma Lam. and Ficus benghalensis L., etc. are highly tolerant species while Ficus infectoria L., Artocarpus heterophyllus Lam., Ipomoea purpurea L., Allianthus excelsa Roxb. and Bauhinia variegata L. are intermediate tolerant species. T. grandis had shown the highest dust-holding capacity (2.566 ± 0.0004 mg/cm2) whereas Albizia procera (0.018 ± 0.0002 mg/cm2) was found to be the lowest dust-holding capacity. Our findings also showed that the T. grandis and F. hispida have significant dust deposition with minimal effect of dust on their leaf chlorophyll (17.447 ± 0.019 mg/g and 14.703 ± 0.201 mg/g), protein (0.699 ± 0.001 mg/g and 0.604 ± 0.002 mg/g) and carotenoid (0.372 ± 0.003 mg/g and 0.354 ± 0.003 mg/g) content respectively among all selected plant species. Therefore, in the present investigation, plant species with high tolerance to high dust-holding capacity on their leaf surfaces are preferable for green corridors as open cast granite mines and their adjacent areas.展开更多
The Tibetan Plateau (TP), located at a height of nearly 4000 m above sea level, has a unique setting that effects the environment of the whole of northern hemisphere. It acts as the “water reservoir” of Asia as seve...The Tibetan Plateau (TP), located at a height of nearly 4000 m above sea level, has a unique setting that effects the environment of the whole of northern hemisphere. It acts as the “water reservoir” of Asia as several important rivers originate from this region. Therefore, even slight alternations in the TP’s hydrological cycle may have profound ecological and social impacts. However, it is experiencing a significant increase in accumulation of dust from local and global sources. The impact of dust on the region’s climate has become an active area of research. Further, the study of sources of dust arriving at the TP is also critical. Accumulation of dust is impacting temperature, snow cover, glaciers, water resources, biodiversity and soil desertification. This manuscript tries to provide a comprehensive summary of the impact of dust on weather, climate, and environmental components of the TP. The impact of dust on clouds, radiative energy, precipitation, atmospheric circulation, snow and ice cover, soil, air quality, and river water quality of the TP are discussed. It further discusses the steps immediately needed to mitigate the devastating impact of dust on the fragile ecosystem of the TP.展开更多
Particulate matter (PM10) deposited as road dust is considered an important source of contamination from atmosphere. However, there are limited studies on the toxicity of road dust as such on different organisms. This...Particulate matter (PM10) deposited as road dust is considered an important source of contamination from atmosphere. However, there are limited studies on the toxicity of road dust as such on different organisms. This study evaluates the toxicity of road dust using different extraction scenarios on Daphnia magna and Artemia salina as aquatic organisms and also on Prosopis cineraria and Vachellia tortilis as local plant species. Chemical analysis of different extracts shows considerable amount of trace metals, however the trace metals in the dust extract associated with suspended sediment were not absorbed by the receptors. On the other hand, the concentration of trace metals in the artificial mixture was found bioavailable and absorbed causing a high percentage of mortality. In the plant assay, significant difference was obtained in the germination percentage between the control and three different extraction exposures in both plant species. The mean root length of P. cineraria and V. tortilis were higher in 20% and 50% extracts than the control probably due to the availability of nutrients from the dust extract. Interestingly however, the seedling vigor index was the opposite with higher index in the control and lower in dust extracts that contain heavy metals.展开更多
Evaluation of assessment of the metal processes governing the metals distribution in soil and dust samples is very significant and protects the health of human and ecological system. Recently, special attention has gi...Evaluation of assessment of the metal processes governing the metals distribution in soil and dust samples is very significant and protects the health of human and ecological system. Recently, special attention has given to the assessment of metals pollution impact on soil and dust within industrial areas. This study aims to assess the metal contamination levels in the topsoil and street dust around the cement factory in Qadissiya area, southern Jordan. The levels of seven metals (namely Fe, Zn, Cu, Pb, Cr, Cd, and Mn) were analyzed using Flame Atomic Absorption Spec-trophotometer (FAAS) to monitor, evaluate, and to compare topsoil and road dust pollution values of metals of the different types of urban area. The physicochemical parameters which believed to affect the mobility of metals in the soil of the study area were determined such as pH, EC, TOM, CaCO3 and CEC. The levels of metal in soil samples are greater on the surface but decrease in the lower part as a result of the basic nature of soil. The mean values of the metals in soil can be arranged in the following order: Zn > Pb > Mn > Fe > Cu > Cr > Cd. The relatively high concentration of metals in the soil sample was attributed to anthropogenic activities such as traffic emissions, cement factory and agricultural activities. Correlation coefficient analysis and the spatial distribution of indices and the results of statistical analysis indicate three groups of metals: Fe and Mn result by natural origin, Zn, Pb, Cu and Zn result by anthropogenic origin (mainly motor vehicle traffic and abrasion of tires) while Cd is mixed origin. The higher content level values of metals of anthropogenic source in soil samples indicate that it is a source of contamination of air in the studied area. .展开更多
Dust deposition on the surface of photovoltaic (PV) cells poses a significant challenge to their efficiency, especially in arid regions characterized by desert and semi-desert conditions. Despite the pronounced impact...Dust deposition on the surface of photovoltaic (PV) cells poses a significant challenge to their efficiency, especially in arid regions characterized by desert and semi-desert conditions. Despite the pronounced impact of dust accumulation, these regions offer optimal solar radiation and minimal cloud cover, making them ideal candidates for widespread PV cell deployment. Various surface cleaning methods exist, each employing distinct approaches. Choosing an appropriate cleaning method requires a comprehensive understanding of the mechanisms involved in both dust deposition on module surfaces and dust adhesion to PV cell surfaces. The mechanisms governing dust deposition and adhesion are complex and multifaceted, influenced by factors such as the nature and properties of the dust particles, environmental climatic conditions, characteristics of protective coatings, and the specific location of the PV installation. These factors exhibit regional variations, necessitating the implementation of diverse cleaning approaches tailored to the unique conditions of each location. The first part of this article explores the factors influencing dust deposition on PV cell surfaces, delving into the intricate interplay of environmental variables and particle characteristics. Subsequently, the second part addresses various cleaning methods, offering an analysis of their respective advantages and disadvantages. By comprehensively examining the factors influencing dust accumulation and evaluating the effectiveness of different cleaning strategies, this article aims to contribute valuable insights to the ongoing efforts to optimize the performance and longevity of photovoltaic systems in diverse geographical contexts.展开更多
利用完全耦合大气化学模式WRF—Dust(Weather Research and Forecasting—Dust)对2011年5月1-4日影响上海地区的一次典型沙尘天气过程进行了数值模拟研究,并与观测资料进行了对比分析.结果表明:WRF—Dust模式成功模拟了此次沙尘过...利用完全耦合大气化学模式WRF—Dust(Weather Research and Forecasting—Dust)对2011年5月1-4日影响上海地区的一次典型沙尘天气过程进行了数值模拟研究,并与观测资料进行了对比分析.结果表明:WRF—Dust模式成功模拟了此次沙尘过程的形成、发展和演变的整体特征及其影响时间及范围;较好地模拟了沙尘到达上海的时间(模式和观测均在1日11:00前后)和直接影响的结束时间(2日02:00前后),而且模式沙尘浓度与观测资料较为一致;但局部地区和部分时段的气象条件和沙尘模拟还存在一定的偏差,未能准确模拟过程后期沙尘回流对长三角沿海地区的影响.分析了导致模拟偏差的原因,并探讨了提高模式沙尘模拟能力的可能途径.展开更多
The micromorphology and physicochemical properties of hydrophobic blasting dust(HBD)from an iron mine were comprehensively analyzed by laser particle size analysis(LPSA),scanning electron microscopy(SEM),X-ray diffrac...The micromorphology and physicochemical properties of hydrophobic blasting dust(HBD)from an iron mine were comprehensively analyzed by laser particle size analysis(LPSA),scanning electron microscopy(SEM),X-ray diffraction(XRD),and X-ray photoelectron spectroscopy(XPS).The results show that the HBD particles can be classified into three types based on their particle size(PS):larger particles(PS>10μm),medium particles(1μm≤PS≤10μm),and nanoparticles(PS<1μm).The cumulative volume of respirable dust(PS≤10μm)was 84.45%.In addition,three shapes of HBD were observed by SEM:prism,flake,and bulk.In particular,the small particles were mostly flaky,with a greater possibility of being inhaled.Furthermore,the body and surface chemical compounds of HBD were determined by XRD and XPS,respectively.Ammonium adipate(C6H16N2O4)was the only organic compound in the body of HBD,but its mass fraction was only 13.4%.However,the content of organic C on the surface of HBD was 85.35%.This study demonstrated that the small-particle size and large amount of organic matter on the surface of HBD are the main reasons for its hydrophobicity,which can provide important guidance for controlling respirable dust in iron mines.展开更多
Source apportionment studies of TSP (atmospheric particulate matter with aerodynamic diameters ≤ 100 μm) and PM10 (atmospheric particulate matter with aerodynamic diameters ≤ 10 μm) have revealed that soil dus...Source apportionment studies of TSP (atmospheric particulate matter with aerodynamic diameters ≤ 100 μm) and PM10 (atmospheric particulate matter with aerodynamic diameters ≤ 10 μm) have revealed that soil dust is an important source of these particulates in China. In this study, the contamination of soil dust was assessed through the use of a geoaccumulation index (Igeo). The mass concentration profiles of 17 elements (Na, Mg, Al, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Br, Ba, and Pb) were established for urban soil dusts. Geochemical compositions of soils from 15 cities were used to represent background urban soil compositions. The results of this study indicated that a number of cities are severely polluted by particulates containing Ca, Cr, Ni, and Cu in both size fractions (TSP and PM10). Contamination with Zn, Pb, Co, and Br was moderate to severe (Igeo 〉 2). The Al and Fe concentrations were not high enough for them to be considered contaminants.展开更多
Mine dust is classified as one of five natural coal mining disasters because it can harm the health of miners and poses a serious threat to the safety of the coal mine. Therefore, preparation of an effective dust supp...Mine dust is classified as one of five natural coal mining disasters because it can harm the health of miners and poses a serious threat to the safety of the coal mine. Therefore, preparation of an effective dust suppression agent is highly desired. To improve the capture efficiency of fine dust, this study examines the dust suppression effects of various combinations of wetting agents, additives, and coagulation agents by using the optimum seeking method to reduce mine dust, particularly respirable particles. The optimal formula is shown to contain 10wt% fatty alcohol polyoxyethylene ether(JFC), 4.96wt% cationic polyacrylamide, and 4wt% calcium chloride. The dust suppression effect can be achieved at 96.1% in 5 min by using the optimal formula.展开更多
The deposition of Asian dust aerosols during their trans-Pacific transport might cause significant marine phytoplankton biomass increases. However, the knowledge of the trans-Pacific dust transport, deposition, and sp...The deposition of Asian dust aerosols during their trans-Pacific transport might cause significant marine phytoplankton biomass increases. However, the knowledge of the trans-Pacific dust transport, deposition, and spatial distribution is still poor due to a lack of continuous and simultaneous observations in the Asian subcontinent, the north Pacific Ocean, and North America. The severe Asian dust storm during 6 to 9 April 2001 provided an opportunity to gain a better understanding of trans-Pacific dust transport and deposition, using a comprehensive set of observations from satellites, ground-based light detection and ranging, aircraft, and surface observation networks. The observations and model simulations outline the general pattern of dust transport, deposition, vertical profile, and spatial distribution. The following points were observed: (1) the surface dust concentrations decreased exponentially with the increasing dust transport distance from 80°E to 120°W along the transport pathway; (2) the altitude of the dust concentration peak increased with increasing transport distance in the north Pacific region; and (3) the spatial distribution of dust deposition mainly depended on the trans-Pacific transport route.展开更多
The application of pressure leaching technology in the treatment of high-copper and high-arsenic dust was studied.The pressure leaching technique was determined as follows:the liquid to solid ratio(mL/g)of 5:1,the lea...The application of pressure leaching technology in the treatment of high-copper and high-arsenic dust was studied.The pressure leaching technique was determined as follows:the liquid to solid ratio(mL/g)of 5:1,the leaching temperature of 453 K,the retention time of 2 h,the initial sulfuric acid concentration of 0.74 mol/L,the oxygen partial pressure of 0.7 MPa,and the agitation speed of 500 r/min.Under these conditions,95%of copper and 99%of zinc and only 6%of iron in the dust were leached,while about 20%of arsenic was also leached.The leaching technique was optimized further to restrain the leaching of arsenic by adding a small quantity of ferrous iron into the leaching system(c(Fe2 +)=0.036 mol/L).Copper and zinc can be effectively separated from arsenic and iron in the leach.The optimal pressure leaching technique of high-copper and high-arsenic smelter dust is proved to be effective.展开更多
文摘The present study has been carried out on a total of 50 available plant species to assess their dust-capturing capacity and biochemical performances in and around open cast granite mine areas of Jhansi district and Bundelkhand University campus treated as control site. Plant species existing under a polluted environment for a long time may be considered as potentially resistant species and recommended for green belt design in mining areas, especially to cope with dust pollution. Results showed the pollution level, especially of mining-originated dust particles holding capacity of leaves and effects of different biochemical parameters (Total Chlorophyll, Protein and Carotenoid) of existing plant species both from mining areas as well as from Bundelkhand University campus. Based on their performances, Tectona grandis L., Ficus hispida L., Calotropis procera Aiton., Butea monosperma Lam. and Ficus benghalensis L., etc. are highly tolerant species while Ficus infectoria L., Artocarpus heterophyllus Lam., Ipomoea purpurea L., Allianthus excelsa Roxb. and Bauhinia variegata L. are intermediate tolerant species. T. grandis had shown the highest dust-holding capacity (2.566 ± 0.0004 mg/cm2) whereas Albizia procera (0.018 ± 0.0002 mg/cm2) was found to be the lowest dust-holding capacity. Our findings also showed that the T. grandis and F. hispida have significant dust deposition with minimal effect of dust on their leaf chlorophyll (17.447 ± 0.019 mg/g and 14.703 ± 0.201 mg/g), protein (0.699 ± 0.001 mg/g and 0.604 ± 0.002 mg/g) and carotenoid (0.372 ± 0.003 mg/g and 0.354 ± 0.003 mg/g) content respectively among all selected plant species. Therefore, in the present investigation, plant species with high tolerance to high dust-holding capacity on their leaf surfaces are preferable for green corridors as open cast granite mines and their adjacent areas.
文摘The Tibetan Plateau (TP), located at a height of nearly 4000 m above sea level, has a unique setting that effects the environment of the whole of northern hemisphere. It acts as the “water reservoir” of Asia as several important rivers originate from this region. Therefore, even slight alternations in the TP’s hydrological cycle may have profound ecological and social impacts. However, it is experiencing a significant increase in accumulation of dust from local and global sources. The impact of dust on the region’s climate has become an active area of research. Further, the study of sources of dust arriving at the TP is also critical. Accumulation of dust is impacting temperature, snow cover, glaciers, water resources, biodiversity and soil desertification. This manuscript tries to provide a comprehensive summary of the impact of dust on weather, climate, and environmental components of the TP. The impact of dust on clouds, radiative energy, precipitation, atmospheric circulation, snow and ice cover, soil, air quality, and river water quality of the TP are discussed. It further discusses the steps immediately needed to mitigate the devastating impact of dust on the fragile ecosystem of the TP.
文摘Particulate matter (PM10) deposited as road dust is considered an important source of contamination from atmosphere. However, there are limited studies on the toxicity of road dust as such on different organisms. This study evaluates the toxicity of road dust using different extraction scenarios on Daphnia magna and Artemia salina as aquatic organisms and also on Prosopis cineraria and Vachellia tortilis as local plant species. Chemical analysis of different extracts shows considerable amount of trace metals, however the trace metals in the dust extract associated with suspended sediment were not absorbed by the receptors. On the other hand, the concentration of trace metals in the artificial mixture was found bioavailable and absorbed causing a high percentage of mortality. In the plant assay, significant difference was obtained in the germination percentage between the control and three different extraction exposures in both plant species. The mean root length of P. cineraria and V. tortilis were higher in 20% and 50% extracts than the control probably due to the availability of nutrients from the dust extract. Interestingly however, the seedling vigor index was the opposite with higher index in the control and lower in dust extracts that contain heavy metals.
文摘Evaluation of assessment of the metal processes governing the metals distribution in soil and dust samples is very significant and protects the health of human and ecological system. Recently, special attention has given to the assessment of metals pollution impact on soil and dust within industrial areas. This study aims to assess the metal contamination levels in the topsoil and street dust around the cement factory in Qadissiya area, southern Jordan. The levels of seven metals (namely Fe, Zn, Cu, Pb, Cr, Cd, and Mn) were analyzed using Flame Atomic Absorption Spec-trophotometer (FAAS) to monitor, evaluate, and to compare topsoil and road dust pollution values of metals of the different types of urban area. The physicochemical parameters which believed to affect the mobility of metals in the soil of the study area were determined such as pH, EC, TOM, CaCO3 and CEC. The levels of metal in soil samples are greater on the surface but decrease in the lower part as a result of the basic nature of soil. The mean values of the metals in soil can be arranged in the following order: Zn > Pb > Mn > Fe > Cu > Cr > Cd. The relatively high concentration of metals in the soil sample was attributed to anthropogenic activities such as traffic emissions, cement factory and agricultural activities. Correlation coefficient analysis and the spatial distribution of indices and the results of statistical analysis indicate three groups of metals: Fe and Mn result by natural origin, Zn, Pb, Cu and Zn result by anthropogenic origin (mainly motor vehicle traffic and abrasion of tires) while Cd is mixed origin. The higher content level values of metals of anthropogenic source in soil samples indicate that it is a source of contamination of air in the studied area. .
文摘Dust deposition on the surface of photovoltaic (PV) cells poses a significant challenge to their efficiency, especially in arid regions characterized by desert and semi-desert conditions. Despite the pronounced impact of dust accumulation, these regions offer optimal solar radiation and minimal cloud cover, making them ideal candidates for widespread PV cell deployment. Various surface cleaning methods exist, each employing distinct approaches. Choosing an appropriate cleaning method requires a comprehensive understanding of the mechanisms involved in both dust deposition on module surfaces and dust adhesion to PV cell surfaces. The mechanisms governing dust deposition and adhesion are complex and multifaceted, influenced by factors such as the nature and properties of the dust particles, environmental climatic conditions, characteristics of protective coatings, and the specific location of the PV installation. These factors exhibit regional variations, necessitating the implementation of diverse cleaning approaches tailored to the unique conditions of each location. The first part of this article explores the factors influencing dust deposition on PV cell surfaces, delving into the intricate interplay of environmental variables and particle characteristics. Subsequently, the second part addresses various cleaning methods, offering an analysis of their respective advantages and disadvantages. By comprehensively examining the factors influencing dust accumulation and evaluating the effectiveness of different cleaning strategies, this article aims to contribute valuable insights to the ongoing efforts to optimize the performance and longevity of photovoltaic systems in diverse geographical contexts.
文摘利用完全耦合大气化学模式WRF—Dust(Weather Research and Forecasting—Dust)对2011年5月1-4日影响上海地区的一次典型沙尘天气过程进行了数值模拟研究,并与观测资料进行了对比分析.结果表明:WRF—Dust模式成功模拟了此次沙尘过程的形成、发展和演变的整体特征及其影响时间及范围;较好地模拟了沙尘到达上海的时间(模式和观测均在1日11:00前后)和直接影响的结束时间(2日02:00前后),而且模式沙尘浓度与观测资料较为一致;但局部地区和部分时段的气象条件和沙尘模拟还存在一定的偏差,未能准确模拟过程后期沙尘回流对长三角沿海地区的影响.分析了导致模拟偏差的原因,并探讨了提高模式沙尘模拟能力的可能途径.
基金financially supported by the National Key Research and Development Program of China(No.SQ2017YFSF060069)the National Natural Science Foundation of China(No.51574017)
文摘The micromorphology and physicochemical properties of hydrophobic blasting dust(HBD)from an iron mine were comprehensively analyzed by laser particle size analysis(LPSA),scanning electron microscopy(SEM),X-ray diffraction(XRD),and X-ray photoelectron spectroscopy(XPS).The results show that the HBD particles can be classified into three types based on their particle size(PS):larger particles(PS>10μm),medium particles(1μm≤PS≤10μm),and nanoparticles(PS<1μm).The cumulative volume of respirable dust(PS≤10μm)was 84.45%.In addition,three shapes of HBD were observed by SEM:prism,flake,and bulk.In particular,the small particles were mostly flaky,with a greater possibility of being inhaled.Furthermore,the body and surface chemical compounds of HBD were determined by XRD and XPS,respectively.Ammonium adipate(C6H16N2O4)was the only organic compound in the body of HBD,but its mass fraction was only 13.4%.However,the content of organic C on the surface of HBD was 85.35%.This study demonstrated that the small-particle size and large amount of organic matter on the surface of HBD are the main reasons for its hydrophobicity,which can provide important guidance for controlling respirable dust in iron mines.
文摘Source apportionment studies of TSP (atmospheric particulate matter with aerodynamic diameters ≤ 100 μm) and PM10 (atmospheric particulate matter with aerodynamic diameters ≤ 10 μm) have revealed that soil dust is an important source of these particulates in China. In this study, the contamination of soil dust was assessed through the use of a geoaccumulation index (Igeo). The mass concentration profiles of 17 elements (Na, Mg, Al, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Br, Ba, and Pb) were established for urban soil dusts. Geochemical compositions of soils from 15 cities were used to represent background urban soil compositions. The results of this study indicated that a number of cities are severely polluted by particulates containing Ca, Cr, Ni, and Cu in both size fractions (TSP and PM10). Contamination with Zn, Pb, Co, and Br was moderate to severe (Igeo 〉 2). The Al and Fe concentrations were not high enough for them to be considered contaminants.
基金National Natural Science Funds-Coal Joint Funds Key Support Project (No. U1261205)Basic Research Plan Project of Science and Technology of Qingdao (No. 13-1-4-149-jch)Key Technology Development Projects of Qingdao Economic and Technological Development Zone (No. 2013-1-66) for providing the financial support to this research
文摘Mine dust is classified as one of five natural coal mining disasters because it can harm the health of miners and poses a serious threat to the safety of the coal mine. Therefore, preparation of an effective dust suppression agent is highly desired. To improve the capture efficiency of fine dust, this study examines the dust suppression effects of various combinations of wetting agents, additives, and coagulation agents by using the optimum seeking method to reduce mine dust, particularly respirable particles. The optimal formula is shown to contain 10wt% fatty alcohol polyoxyethylene ether(JFC), 4.96wt% cationic polyacrylamide, and 4wt% calcium chloride. The dust suppression effect can be achieved at 96.1% in 5 min by using the optimal formula.
文摘The deposition of Asian dust aerosols during their trans-Pacific transport might cause significant marine phytoplankton biomass increases. However, the knowledge of the trans-Pacific dust transport, deposition, and spatial distribution is still poor due to a lack of continuous and simultaneous observations in the Asian subcontinent, the north Pacific Ocean, and North America. The severe Asian dust storm during 6 to 9 April 2001 provided an opportunity to gain a better understanding of trans-Pacific dust transport and deposition, using a comprehensive set of observations from satellites, ground-based light detection and ranging, aircraft, and surface observation networks. The observations and model simulations outline the general pattern of dust transport, deposition, vertical profile, and spatial distribution. The following points were observed: (1) the surface dust concentrations decreased exponentially with the increasing dust transport distance from 80°E to 120°W along the transport pathway; (2) the altitude of the dust concentration peak increased with increasing transport distance in the north Pacific region; and (3) the spatial distribution of dust deposition mainly depended on the trans-Pacific transport route.
文摘The application of pressure leaching technology in the treatment of high-copper and high-arsenic dust was studied.The pressure leaching technique was determined as follows:the liquid to solid ratio(mL/g)of 5:1,the leaching temperature of 453 K,the retention time of 2 h,the initial sulfuric acid concentration of 0.74 mol/L,the oxygen partial pressure of 0.7 MPa,and the agitation speed of 500 r/min.Under these conditions,95%of copper and 99%of zinc and only 6%of iron in the dust were leached,while about 20%of arsenic was also leached.The leaching technique was optimized further to restrain the leaching of arsenic by adding a small quantity of ferrous iron into the leaching system(c(Fe2 +)=0.036 mol/L).Copper and zinc can be effectively separated from arsenic and iron in the leach.The optimal pressure leaching technique of high-copper and high-arsenic smelter dust is proved to be effective.