Most methods of homogenization of climate data are applied to time series of a single variable, such as daily maximum temperature(Tmax) or daily minimum temperature(Tmin). Consequently, the physical relationship among...Most methods of homogenization of climate data are applied to time series of a single variable, such as daily maximum temperature(Tmax) or daily minimum temperature(Tmin). Consequently, the physical relationship among different variables, e.g., Tmax>Tmin, may be distorted after homogenization of climate series of individual variables. The authors develop a solution to improve consistency among diurnal temperature records, while using the Multiple Analysis of Series for Homogenization(MASH) method to homogenize the observation series of daily mean temperature(Tm), Tmin, and Tmax at 545 stations in China for the period 1960–2011, called CHTM2.0. In the previous version of this homogenized dataset based on MASH(CHTM1.0) for the period 1960–2008, there are a few records(0.039% of the total) that are physically inconsistent. For developing CHTM2.0, the authors apply additional adjustments for each day with inconsistent temperature records, in order to hold Tmax>Tm>Tmin. Although the additional adjustments are barely influential for estimating long-term climate trends in China as a whole(because very few records are additionally adjusted), the newly introduced solution improves the physical consistency throughout the dataset. It is also helpful for developing more reasonable homogenized climate datasets with regard to physical consistency among multiple variables. Based on CHTM2.0, the annual Tmax/Tm/Tmin series averaged over China for the period 1960–2011 show significant warming trends of about 0.19/0.25/0.34°C per decade, respectively. Large warming trends of up to 0.425/0.596/ 0.704°C per decade occur in northeastern and northwestern China.展开更多
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA05090105)the National Department Public Benefit Research Foundation of China (Grant No. GYHY201206013)+2 种基金the State Programs of Science and Technology Development (Grant No. 2012BAC22B04)the Urban Meteorological Science Research Foundation (UMRF201211)WU Hongyi was supported by the Science and Technology Program of Institute of Urban Meteorology (Grant No. IUMKY201302PP0102)
文摘Most methods of homogenization of climate data are applied to time series of a single variable, such as daily maximum temperature(Tmax) or daily minimum temperature(Tmin). Consequently, the physical relationship among different variables, e.g., Tmax>Tmin, may be distorted after homogenization of climate series of individual variables. The authors develop a solution to improve consistency among diurnal temperature records, while using the Multiple Analysis of Series for Homogenization(MASH) method to homogenize the observation series of daily mean temperature(Tm), Tmin, and Tmax at 545 stations in China for the period 1960–2011, called CHTM2.0. In the previous version of this homogenized dataset based on MASH(CHTM1.0) for the period 1960–2008, there are a few records(0.039% of the total) that are physically inconsistent. For developing CHTM2.0, the authors apply additional adjustments for each day with inconsistent temperature records, in order to hold Tmax>Tm>Tmin. Although the additional adjustments are barely influential for estimating long-term climate trends in China as a whole(because very few records are additionally adjusted), the newly introduced solution improves the physical consistency throughout the dataset. It is also helpful for developing more reasonable homogenized climate datasets with regard to physical consistency among multiple variables. Based on CHTM2.0, the annual Tmax/Tm/Tmin series averaged over China for the period 1960–2011 show significant warming trends of about 0.19/0.25/0.34°C per decade, respectively. Large warming trends of up to 0.425/0.596/ 0.704°C per decade occur in northeastern and northwestern China.