[Objective] Cause of disease and control measures of rice dry straight head disease in Chuzhou area was discussed. [Method] Field investigation and comprehensive analysis of the literature were conducted to study the ...[Objective] Cause of disease and control measures of rice dry straight head disease in Chuzhou area was discussed. [Method] Field investigation and comprehensive analysis of the literature were conducted to study the reason of dry straight head disease in Chuzhou area, some common control measures were summarized. [Result] The characteristic of main symptoms included incidence of single plant, incidence of cluster, inclusive incidence between clusters. Sporadic normal rice grains existed in diseased spikes under the incidence of grains. The main pathogenic factors of dry straight head disease were concentration of arsenic or lack of elements, belonging to physiological disease, while the effect of other pathogenic factors could not be excluded. Heavy application of organic fertilizer and crop rotation should be conducted, white soil field should be paid more attention about the changes of disease condition with more wet and dry roasting over fields. Application time of micro fertilizer should be chosen properly, while tillering final stage and pollen formation stage must be adjusted to avoid high temperature, irrigation management should also be improved. [Conclusion] The study could provide reference for preventing rice dry straight head disease.展开更多
Hydrostatic guideways have various applications in precision machine tools due to their high motion accuracy. The analysis of motion straightness in hydrostatic guideways is generally ignoring the external load on the...Hydrostatic guideways have various applications in precision machine tools due to their high motion accuracy. The analysis of motion straightness in hydrostatic guideways is generally ignoring the external load on the slider. A variation force also exists, caused by the different working positions, together with the dead load of the slider and that of other auxiliary devices. The effect of working position on vertical motion straightness is investigated based on the equivalent static model, considering the error averaging effort of pressured oil film in open hydrostatic guideways. Open hydrostatic guideways in LGF1000 are analyzed with this approach. The theoretical results show that the slider has maximum vertical motion straightness when the working position is closer the guiderail of Y axis. The vertical motion straightness reaches a minimum value as the working position is located at the center of the two guiderails on the Y axis. The difference between the maximum and minimum vertical motion straightness is 34.7%. The smaller vertical motion straightness is attributed to the smaller spacing of the two pads centers, along the Y direction. The experimental results show that the vertical motion straightness is 4.15 μm/1200 mm, when the working position is located in the middle of the Xbeam, and 5.08 pro/1200 mm, when the working position is approaching the Y guiderails, denoting an increase of 18.3%. The changing trends of the measured results validate the correctness of the theoretical model. The research work can be used to reveal the variation law of accuracy of the open hydrostatic guideways, under different working positions, to predict the machining precision, and provides the basis for an error compensation strategy for gantry type grinding machines.展开更多
Straightness error is an important parameter in measuring high-precision shafts. New generation geometrical product speeifieation(GPS) requires the measurement uncertainty characterizing the reliability of the resul...Straightness error is an important parameter in measuring high-precision shafts. New generation geometrical product speeifieation(GPS) requires the measurement uncertainty characterizing the reliability of the results should be given together when the measurement result is given. Nowadays most researches on straightness focus on error calculation and only several research projects evaluate the measurement uncertainty based on "The Guide to the Expression of Uncertainty in Measurement(GUM)". In order to compute spatial straightness error(SSE) accurately and rapidly and overcome the limitations of GUM, a quasi particle swarm optimization(QPSO) is proposed to solve the minimum zone SSE and Monte Carlo Method(MCM) is developed to estimate the measurement uncertainty. The mathematical model of minimum zone SSE is formulated. In QPSO quasi-random sequences are applied to the generation of the initial position and velocity of particles and their velocities are modified by the constriction factor approach. The flow of measurement uncertainty evaluation based on MCM is proposed, where the heart is repeatedly sampling from the probability density function(PDF) for every input quantity and evaluating the model in each case. The minimum zone SSE of a shaft measured on a Coordinate Measuring Machine(CMM) is calculated by QPSO and the measurement uncertainty is evaluated by MCM on the basis of analyzing the uncertainty contributors. The results show that the uncertainty directly influences the product judgment result. Therefore it is scientific and reasonable to consider the influence of the uncertainty in judging whether the parts are accepted or rejected, especially for those located in the uncertainty zone. The proposed method is especially suitable when the PDF of the measurand cannot adequately be approximated by a Gaussian distribution or a scaled and shifted t-distribution and the measurement model is non-linear.展开更多
AIM: To present the 18 year survival and the clinical and radiological outcomes of the Müller straight stem, cemented, total hip arthroplasty(THA).METHODS: Between 1989 and 2007, 176 primary total hip arthroplast...AIM: To present the 18 year survival and the clinical and radiological outcomes of the Müller straight stem, cemented, total hip arthroplasty(THA).METHODS: Between 1989 and 2007, 176 primary total hip arthroplasties in 164 consecutive patients were performed in our institution by the senior author. All patients received a Müller cemented straight stem and a cemented polyethylene liner. The mean age of the patients was 62 years(45-78). The diagnosis was primary osteoarthritis in 151 hips, dysplasia of the hip in 12 and subcapital fracture of the femur in 13. Following discharge, serial follow-up consisted of clinical evaluation based on the Harris Hip Score and radiological assessment. The survival of the prosthesis using revision for any reason as an end-point was calculated by KaplanMeier analysis.RESULTS: Twenty-four(15%) patients died during the follow-up study, 6(4%) patients were lost, while the remaining 134 patients(141 hips) were followedup for a mean of 10 years(3-18 years). HSS score at the latest follow-up revealed that 84 hips(59.5%) had excellent results, 30(22.2%) good, 11(7.8%) fair and 9(6.3%) poor. There were 3 acetabular revisions due to aseptic loosening. Six(4.2%) stems were diagnosed as having radiographic definitive loosening; however, only 1 was revised. 30% of the surviving stems showed no radiological changes of radiolucency, while 70% showed some changes. Survival of the prosthesis for any reason was 96% at 10 years and 81% at 18 years. CONCLUSION: The 18 year survival of the Müller straight stem, cemented THA is comparable to those of other successful cemented systems.展开更多
Straight-line compliant mechanisms are important building blocks to design a linear-motion stage, which is very useful in precision applications. However, only a few configurations of straight-line compliant mechanism...Straight-line compliant mechanisms are important building blocks to design a linear-motion stage, which is very useful in precision applications. However, only a few configurations of straight-line compliant mechanisms are applicable. To construct more kinds of them, an approach to design large-displacement straight-line flexural mechanisms with rotational flexural joints is proposed, which is based on a viewpoint that the straight-line motion is regarded as a compromise of rigid and compliant parasitic motion of a rotational flexural joint. An analytical design method based on the Taylor series expansion is proposed to quickly obtain an approximate solution. To illustrate and verify the proposed method, two kinds of flexural joints, cross-axis hinge and leaf-type isosceles-trapezoidal flexural(LITF) pivot are used to reconstruct straight-line flexural mechanisms. Their performances are obtained by analytic and FEA method respectively. The comparisons of the results show the accuracy of the approach. Both examples show that the proposed approach can convert a large-deflection flexural joint into approximate straight-line mechanism with a high linearity that is higher than 5 000 within 5 man displacement. This can lead to a new way to design, analyze or optimize straight-line flexure mechanisms.展开更多
Straight bevel gears are widely applied in automotive, aerospace, chemical and many other fields as one of the most common type of gears. Currently, the researches on straight bevel gears have focused on the fields of...Straight bevel gears are widely applied in automotive, aerospace, chemical and many other fields as one of the most common type of gears. Currently, the researches on straight bevel gears have focused on the fields of fatigue, wear, noise and vibration, while little attention is paid to the effect of multiple alignment errors on the gear tooth wear. To study the influence of alignment errors on the gear tooth wear, a simulated model of a straight bevel gear pair is established. Then, the contact pressure on the tooth surface is analyzed under the various alignment errors according to the Archard wear relationship. The main combinations of alignment errors played vital roles on the tooth wear are investigated. The result shows that under the single alignment error, the contact pressure moves to the tooth heel and increases greatly at here when ?P=0.1 or ?G=0.1; when ?E=–0.03, the contact pressure greatly increases at the tooth heel, but it obviously increases at the tooth toe when ?E=0.03; the alignment error ?γ=1 has little effect on the contact pressure on the tooth surface. Moreover, the combination of ?P, ?G, ?E〈0 and ?γ is the most dangerous type among the multiple alignment errors. This research provides valuable guidelines for predicting the tooth wear under various alignment errors.展开更多
Although there are some multi-sensor methods for measuring the straightness and tilt errors of a linear slideway, they need to be further improved in some aspects, such as suppressing measurement noise and reducing pr...Although there are some multi-sensor methods for measuring the straightness and tilt errors of a linear slideway, they need to be further improved in some aspects, such as suppressing measurement noise and reducing precondition.In this paper, a new four-sensor method with an improved measurement system is proposed to on-machine separate the straightness and tilt errors of a linear slideway from the sensor outputs, considering the influences of the reference surface profile and the zero-adjustment values. The improved system is achieved by adjusting a single sensor to di erent positions. Based on the system, a system of linear equations is built by fusing the sensor outputs to cancel out the e ects of the straightness and tilt errors. Three constraints are then derived and supplemented into the linear system to make the coe cient matrix full rank. To restrain the sensitivity of the solution of the linear system to the measurement noise in the sensor outputs, the Tikhonov regularization method is utilized. After the surface profile is obtained from the solution, the straightness and tilt errors are identified from the sensor outputs. To analyze the e ects of the measurement noise and the positioning errors of the sensor and the linear slideway, a series of computer simulations are carried out. An experiment is conducted for validation, showing good consistency. The new four-sensor method with the improved measurement system provides a new way to measure the straightness and tilt errors of a linear slideway, which can guarantee favorable propagations of the residuals induced by the noise and the positioning errors.展开更多
Evaporation loss from the saturated soil beneath drip irrigation emitters highly influences the irrigation efficiency of drip krigation (D1]. Subsurface drip irrigation (SDI) is one good approach to curb this ineff...Evaporation loss from the saturated soil beneath drip irrigation emitters highly influences the irrigation efficiency of drip krigation (D1]. Subsurface drip irrigation (SDI) is one good approach to curb this inefficiency, but in a new irrigation method, straight tube irrigation (STI), the irrigation tubes do not need to be buried and thus STI is recommended to increase the irrigation efficiency under normal surface-applied DI. STI consists of only connectors and water-transference tubes that can directly transfer irrigation water from the lateral emitters in the drip line to the root zone of plants. Five-month field experiments were carried out in aeolian sand soil in the forest-belts of the Taklimakan Desert, which have poor water storage capacity, to compare the potential water saving between STI and DI. The preliminary results showed that, compared with DI, STI (1) improved the soil water content in soil depths from 40 to 100 cm under the soil surface; (2) achieved the same irrigation effects in relatively shorter irrigation durations; (3) had very little water loss due to deep seepage; and (4) formed a layer of dry sand about 10 to 30 cm thick immediately below the soil surface, which lessened evaporation loss of soil water beneath the emitters on the soil surface. This demonstrates that STI can maximize the water-saving potential of DI through the reduction of wetted soil perimeters on the soil surface. This is valuable information for water-saving engineering applications and projects with STI in arid and semiarid regions.展开更多
An adaptive robust control algorithm for ship straight path control system in the presence of both modeling uncertainties and the bounded disturbances is proposed. Motivated by the backstepping approach, the algorithm...An adaptive robust control algorithm for ship straight path control system in the presence of both modeling uncertainties and the bounded disturbances is proposed. Motivated by the backstepping approach, the algorithm is developed by using the dissipation theory, such that the resulting dosed-loop system is both strictly dissipative and asymptotically adaptively stable for all admissible uncertainties. Also, it is able to steer an underactuated ship along a prescribed straight path with ultimate bounds under external disturbances induced by wave, wind and ocean current. When there are no disturbances, the straight path control can be implemented in a locally asymptotically stable manner. Simulation results on an ocean-going training ship ‘YULONG' are presented to validate the effectiveness of the algorithm.展开更多
To determine the effect of straight-leg-raising (SLR) movement on epidural fibrosis after laminectomy, 40 adult New Zealand rabbits were selected as laminectomy models in the study. They were divided into 2 groups:...To determine the effect of straight-leg-raising (SLR) movement on epidural fibrosis after laminectomy, 40 adult New Zealand rabbits were selected as laminectomy models in the study. They were divided into 2 groups: a SLR group (group S) and a control group (group C) randomly, with each group having 20 animals. All rabbits were subjected to total laminectomy in the site of S1. Every 5 rabbits in each group selected randomly were killed at the 1st, 2nd, 4th, and 8th week after the surgery. Segments of spines from L,7 to S2 were removed en bloc. After gross evaluation, specimens were sliced up. The slices were stained by HE and Masson's trichrome methods respectively for histological examination. Our results showed that formation process of scar in group S was retarded as compared with that of group C at the time of the 2nd-week, but there was no statistical difference between groups in the adhesion degree (P≥0.05). At the 4th and 8th week, the epidural fibrosis of group S was more serious than that of group C. Since the 2nd-week, the area of scar in group S was larger than that of group C. The number of fibroblasts and inflammatory cells in group S were larger than those of group C at early stage. But in later stage, there was no statistical significance between the two groups. It is concluded that SLR movement after laminectomy may promote the formation of epidural fibrosis and retard the maturity of scar. SLR movement can also aggravate scar adhesion.展开更多
The labyrinth seal in turbomachinery is a key element that restricts leakage flow among rotor-stator clearances from high-pressure regions to low-pressure regions. The fluid-induced forces on the rotor from seals duri...The labyrinth seal in turbomachinery is a key element that restricts leakage flow among rotor-stator clearances from high-pressure regions to low-pressure regions. The fluid-induced forces on the rotor from seals during machine operation must be accurately quantified to predict their dynamic behavior effectively. To understand the fluid-induced force characteristics of the labyrinth seal more fully, the effects of four types of pre-swirls on the leakage, flow field, and fluid-induced force of a rotary straight-through labyrinth gas seal (RSTLGS) were numerically investigated using the proposed steady computational fluid dynamics (CFD) method based on the three-dimensional models of the RSTLGS. The leakage, flow field, and fluid-induced force of the RSTLGS for six axial pre-swirl velocities, four radial preswirl angles, four circumferential positive pre-swirl angles, and four circumferential negative pre-swirl angles were computed under the same geometrical parameters and operational conditions. Mesh analysis ensures the accuracy of the present steady CFD method. The numerical results show that the four types of pre-swirls influence the leakage, flow field, and fluid-induced force of the RSTLGS. The axial pre-swirl velocity remarkably inhibits the fluid-induced force, and the circumferential positive pre-swirl angle and circumferential negative pre-swirl angle remarkably promote the fluid-induced force. The effects of the radial pre-swirl angle on the fluid-induced force are complicated, and the pressure forces and viscous forces show the maximum or minimum values at a specific radial pre-swirl angle. The pre-swirl has a negligible impact on the leakage. The four types of pre-swirls affect the leakage, flow field, and fluidinduced force of the RSTLGS to varying degrees. The pre-swirl is the influence factor affecting the leakage, flow field, and fluid-induced force of the RSTLGS. The conclusions will help to understand the fluid-induced force of labyrinth seals more fully, by providing helpful suggestions for engineering practices and a theoretical basis to analyze the fluid–structure interaction of the seal-rotor system in future research.展开更多
Various kinds of Riemann boundary value problems (BVPs) for analytic functions on closed curves or on open arc, doubly periodic Riemann BVPs, doubly quasi-periodic Riemann BVPs, and BVPs for polyanalytic functions hav...Various kinds of Riemann boundary value problems (BVPs) for analytic functions on closed curves or on open arc, doubly periodic Riemann BVPs, doubly quasi-periodic Riemann BVPs, and BVPs for polyanalytic functions have been widely investigated in [1-8]. The main ap- proach is to use the decomposition of polyanalytic functions and their generalization to transform the boundary value problems to their corresponding boundary value problems for analytic functions. Recently, inverse Riemann BVPs for generalized analytic functions or bianalytic functions have been investigated in [9-12]. In this paper, we consider a kind of Riemann BVP of non-normal type on the infinite straight line and discuss the solvable conditions and the general solution for it.展开更多
Straight carbon nanotubes (CNTs) were achieved by simple thermal chemical vapor deposition(STCVD) catalyzed by Mo-Fe alloy catalyst on silica supporting substrate at 700℃. High-resolution transmission electron micros...Straight carbon nanotubes (CNTs) were achieved by simple thermal chemical vapor deposition(STCVD) catalyzed by Mo-Fe alloy catalyst on silica supporting substrate at 700℃. High-resolution transmission electron microscopy images show that the straight CNTs are well graphitized with no attached amorphous carbon. Mo-Fe alloy catalyst particles play a very crucial role in the growth of straight CNTs. The straight carbon nanotubes contain much less defects than the curved nanotubes and might have potential applications for nanoelectrical devices in the future. The simple synthesis of straight CNTs may have benefit for large-scale productions.展开更多
Extraction of the lower third molar is one of the most common procedures performed in oral surgery. In general, impacted tooth extraction involves sectioning the tooth’s crown and roots. In order to divide the impact...Extraction of the lower third molar is one of the most common procedures performed in oral surgery. In general, impacted tooth extraction involves sectioning the tooth’s crown and roots. In order to divide the impacted tooth so that it can be extracted, high-speed air turbine drills are frequently used. However, complications related to air turbine drills may occur. In this report, we propose an alternative tooth sectioning method that obviates the need for air turbine drill use by using a low-speed straight handpiece and carbide bur. A 21-year-old female patient presented to the institute’s dental hospital complaining of symptoms localized to the left lower third molar tooth that were suggestive of impaction. After physical examination, tooth extraction of the impacted left lower third molar was proposed and the patient consented to the procedure. The crown was divided using a conventional straight low-speed handpiece and carbide bur. This carbide bur can easily cut through the enamel of crown. On post-operative day number five, suture was removed and the wound was extremely clear. This technique could minimise intra-operative time and reduce the morbidity associated with air turbine drill assisted lower third molar extraction.展开更多
Ultra-high molecular weight polyethylene(UHMWPE) fiber/epoxy composites were fabricated by a vacuum assisted resin infused(VARI) processing technology. The curing condition of composites was at a cure temperature ...Ultra-high molecular weight polyethylene(UHMWPE) fiber/epoxy composites were fabricated by a vacuum assisted resin infused(VARI) processing technology. The curing condition of composites was at a cure temperature of 80 ℃ for 3h in a drying oven. The characteristics of 2.5D(shallow bend-joint and deep straight-joint) structure and 3D orthogonal structure were compared. The failure behavior, flexural strength, and microstructures of both composites were investigated. It was found that the flexural property was closely related to undulation angle θ. The flexural strength of 3D orthogonal structure composite was superior to the other two structures composites with the same weave parameters and resin.展开更多
文摘[Objective] Cause of disease and control measures of rice dry straight head disease in Chuzhou area was discussed. [Method] Field investigation and comprehensive analysis of the literature were conducted to study the reason of dry straight head disease in Chuzhou area, some common control measures were summarized. [Result] The characteristic of main symptoms included incidence of single plant, incidence of cluster, inclusive incidence between clusters. Sporadic normal rice grains existed in diseased spikes under the incidence of grains. The main pathogenic factors of dry straight head disease were concentration of arsenic or lack of elements, belonging to physiological disease, while the effect of other pathogenic factors could not be excluded. Heavy application of organic fertilizer and crop rotation should be conducted, white soil field should be paid more attention about the changes of disease condition with more wet and dry roasting over fields. Application time of micro fertilizer should be chosen properly, while tillering final stage and pollen formation stage must be adjusted to avoid high temperature, irrigation management should also be improved. [Conclusion] The study could provide reference for preventing rice dry straight head disease.
基金Supported by National Natural Science Foundation of China(Grant No.51275395)National Science and Technology Major Project of Ministry of Science and Technology of China(Grant No.2012ZX04002–091)the Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents,China(Grant No.2014RCJJ022)
文摘Hydrostatic guideways have various applications in precision machine tools due to their high motion accuracy. The analysis of motion straightness in hydrostatic guideways is generally ignoring the external load on the slider. A variation force also exists, caused by the different working positions, together with the dead load of the slider and that of other auxiliary devices. The effect of working position on vertical motion straightness is investigated based on the equivalent static model, considering the error averaging effort of pressured oil film in open hydrostatic guideways. Open hydrostatic guideways in LGF1000 are analyzed with this approach. The theoretical results show that the slider has maximum vertical motion straightness when the working position is closer the guiderail of Y axis. The vertical motion straightness reaches a minimum value as the working position is located at the center of the two guiderails on the Y axis. The difference between the maximum and minimum vertical motion straightness is 34.7%. The smaller vertical motion straightness is attributed to the smaller spacing of the two pads centers, along the Y direction. The experimental results show that the vertical motion straightness is 4.15 μm/1200 mm, when the working position is located in the middle of the Xbeam, and 5.08 pro/1200 mm, when the working position is approaching the Y guiderails, denoting an increase of 18.3%. The changing trends of the measured results validate the correctness of the theoretical model. The research work can be used to reveal the variation law of accuracy of the open hydrostatic guideways, under different working positions, to predict the machining precision, and provides the basis for an error compensation strategy for gantry type grinding machines.
基金supported by National Natural Science Foundation of China (Grant No. 51075198)Jiangsu Provincial Natural Science Foundation of China (Grant No. BK2010479)+2 种基金Innovation Research of Nanjing Institute of Technology, China (Grant No. CKJ20100008)Jiangsu Provincial Foundation of 333 Talents Engineering of ChinaJiangsu Provincial Foundation of Six Talented Peak of China
文摘Straightness error is an important parameter in measuring high-precision shafts. New generation geometrical product speeifieation(GPS) requires the measurement uncertainty characterizing the reliability of the results should be given together when the measurement result is given. Nowadays most researches on straightness focus on error calculation and only several research projects evaluate the measurement uncertainty based on "The Guide to the Expression of Uncertainty in Measurement(GUM)". In order to compute spatial straightness error(SSE) accurately and rapidly and overcome the limitations of GUM, a quasi particle swarm optimization(QPSO) is proposed to solve the minimum zone SSE and Monte Carlo Method(MCM) is developed to estimate the measurement uncertainty. The mathematical model of minimum zone SSE is formulated. In QPSO quasi-random sequences are applied to the generation of the initial position and velocity of particles and their velocities are modified by the constriction factor approach. The flow of measurement uncertainty evaluation based on MCM is proposed, where the heart is repeatedly sampling from the probability density function(PDF) for every input quantity and evaluating the model in each case. The minimum zone SSE of a shaft measured on a Coordinate Measuring Machine(CMM) is calculated by QPSO and the measurement uncertainty is evaluated by MCM on the basis of analyzing the uncertainty contributors. The results show that the uncertainty directly influences the product judgment result. Therefore it is scientific and reasonable to consider the influence of the uncertainty in judging whether the parts are accepted or rejected, especially for those located in the uncertainty zone. The proposed method is especially suitable when the PDF of the measurand cannot adequately be approximated by a Gaussian distribution or a scaled and shifted t-distribution and the measurement model is non-linear.
文摘AIM: To present the 18 year survival and the clinical and radiological outcomes of the Müller straight stem, cemented, total hip arthroplasty(THA).METHODS: Between 1989 and 2007, 176 primary total hip arthroplasties in 164 consecutive patients were performed in our institution by the senior author. All patients received a Müller cemented straight stem and a cemented polyethylene liner. The mean age of the patients was 62 years(45-78). The diagnosis was primary osteoarthritis in 151 hips, dysplasia of the hip in 12 and subcapital fracture of the femur in 13. Following discharge, serial follow-up consisted of clinical evaluation based on the Harris Hip Score and radiological assessment. The survival of the prosthesis using revision for any reason as an end-point was calculated by KaplanMeier analysis.RESULTS: Twenty-four(15%) patients died during the follow-up study, 6(4%) patients were lost, while the remaining 134 patients(141 hips) were followedup for a mean of 10 years(3-18 years). HSS score at the latest follow-up revealed that 84 hips(59.5%) had excellent results, 30(22.2%) good, 11(7.8%) fair and 9(6.3%) poor. There were 3 acetabular revisions due to aseptic loosening. Six(4.2%) stems were diagnosed as having radiographic definitive loosening; however, only 1 was revised. 30% of the surviving stems showed no radiological changes of radiolucency, while 70% showed some changes. Survival of the prosthesis for any reason was 96% at 10 years and 81% at 18 years. CONCLUSION: The 18 year survival of the Müller straight stem, cemented THA is comparable to those of other successful cemented systems.
基金supported by National Natural Science Foundation of China(Grant No.51275552)Foundation for the Author of National Excellent Doctoral Dissertation of China(Grant No.201234)
文摘Straight-line compliant mechanisms are important building blocks to design a linear-motion stage, which is very useful in precision applications. However, only a few configurations of straight-line compliant mechanisms are applicable. To construct more kinds of them, an approach to design large-displacement straight-line flexural mechanisms with rotational flexural joints is proposed, which is based on a viewpoint that the straight-line motion is regarded as a compromise of rigid and compliant parasitic motion of a rotational flexural joint. An analytical design method based on the Taylor series expansion is proposed to quickly obtain an approximate solution. To illustrate and verify the proposed method, two kinds of flexural joints, cross-axis hinge and leaf-type isosceles-trapezoidal flexural(LITF) pivot are used to reconstruct straight-line flexural mechanisms. Their performances are obtained by analytic and FEA method respectively. The comparisons of the results show the accuracy of the approach. Both examples show that the proposed approach can convert a large-deflection flexural joint into approximate straight-line mechanism with a high linearity that is higher than 5 000 within 5 man displacement. This can lead to a new way to design, analyze or optimize straight-line flexure mechanisms.
基金Supported by National Natural Science Foundation of China(Grant No.51105287)Innovative Research Team Development Program of Ministry of Education of China(Grant No.IRT13087)
文摘Straight bevel gears are widely applied in automotive, aerospace, chemical and many other fields as one of the most common type of gears. Currently, the researches on straight bevel gears have focused on the fields of fatigue, wear, noise and vibration, while little attention is paid to the effect of multiple alignment errors on the gear tooth wear. To study the influence of alignment errors on the gear tooth wear, a simulated model of a straight bevel gear pair is established. Then, the contact pressure on the tooth surface is analyzed under the various alignment errors according to the Archard wear relationship. The main combinations of alignment errors played vital roles on the tooth wear are investigated. The result shows that under the single alignment error, the contact pressure moves to the tooth heel and increases greatly at here when ?P=0.1 or ?G=0.1; when ?E=–0.03, the contact pressure greatly increases at the tooth heel, but it obviously increases at the tooth toe when ?E=0.03; the alignment error ?γ=1 has little effect on the contact pressure on the tooth surface. Moreover, the combination of ?P, ?G, ?E〈0 and ?γ is the most dangerous type among the multiple alignment errors. This research provides valuable guidelines for predicting the tooth wear under various alignment errors.
基金Supported by National Natural Science Foundation of China(Grant No.51435006)
文摘Although there are some multi-sensor methods for measuring the straightness and tilt errors of a linear slideway, they need to be further improved in some aspects, such as suppressing measurement noise and reducing precondition.In this paper, a new four-sensor method with an improved measurement system is proposed to on-machine separate the straightness and tilt errors of a linear slideway from the sensor outputs, considering the influences of the reference surface profile and the zero-adjustment values. The improved system is achieved by adjusting a single sensor to di erent positions. Based on the system, a system of linear equations is built by fusing the sensor outputs to cancel out the e ects of the straightness and tilt errors. Three constraints are then derived and supplemented into the linear system to make the coe cient matrix full rank. To restrain the sensitivity of the solution of the linear system to the measurement noise in the sensor outputs, the Tikhonov regularization method is utilized. After the surface profile is obtained from the solution, the straightness and tilt errors are identified from the sensor outputs. To analyze the e ects of the measurement noise and the positioning errors of the sensor and the linear slideway, a series of computer simulations are carried out. An experiment is conducted for validation, showing good consistency. The new four-sensor method with the improved measurement system provides a new way to measure the straightness and tilt errors of a linear slideway, which can guarantee favorable propagations of the residuals induced by the noise and the positioning errors.
基金Tarim Oilfield Corporation of China National Petroleum Corporation for providing funds
文摘Evaporation loss from the saturated soil beneath drip irrigation emitters highly influences the irrigation efficiency of drip krigation (D1]. Subsurface drip irrigation (SDI) is one good approach to curb this inefficiency, but in a new irrigation method, straight tube irrigation (STI), the irrigation tubes do not need to be buried and thus STI is recommended to increase the irrigation efficiency under normal surface-applied DI. STI consists of only connectors and water-transference tubes that can directly transfer irrigation water from the lateral emitters in the drip line to the root zone of plants. Five-month field experiments were carried out in aeolian sand soil in the forest-belts of the Taklimakan Desert, which have poor water storage capacity, to compare the potential water saving between STI and DI. The preliminary results showed that, compared with DI, STI (1) improved the soil water content in soil depths from 40 to 100 cm under the soil surface; (2) achieved the same irrigation effects in relatively shorter irrigation durations; (3) had very little water loss due to deep seepage; and (4) formed a layer of dry sand about 10 to 30 cm thick immediately below the soil surface, which lessened evaporation loss of soil water beneath the emitters on the soil surface. This demonstrates that STI can maximize the water-saving potential of DI through the reduction of wetted soil perimeters on the soil surface. This is valuable information for water-saving engineering applications and projects with STI in arid and semiarid regions.
文摘An adaptive robust control algorithm for ship straight path control system in the presence of both modeling uncertainties and the bounded disturbances is proposed. Motivated by the backstepping approach, the algorithm is developed by using the dissipation theory, such that the resulting dosed-loop system is both strictly dissipative and asymptotically adaptively stable for all admissible uncertainties. Also, it is able to steer an underactuated ship along a prescribed straight path with ultimate bounds under external disturbances induced by wave, wind and ocean current. When there are no disturbances, the straight path control can be implemented in a locally asymptotically stable manner. Simulation results on an ocean-going training ship ‘YULONG' are presented to validate the effectiveness of the algorithm.
文摘To determine the effect of straight-leg-raising (SLR) movement on epidural fibrosis after laminectomy, 40 adult New Zealand rabbits were selected as laminectomy models in the study. They were divided into 2 groups: a SLR group (group S) and a control group (group C) randomly, with each group having 20 animals. All rabbits were subjected to total laminectomy in the site of S1. Every 5 rabbits in each group selected randomly were killed at the 1st, 2nd, 4th, and 8th week after the surgery. Segments of spines from L,7 to S2 were removed en bloc. After gross evaluation, specimens were sliced up. The slices were stained by HE and Masson's trichrome methods respectively for histological examination. Our results showed that formation process of scar in group S was retarded as compared with that of group C at the time of the 2nd-week, but there was no statistical difference between groups in the adhesion degree (P≥0.05). At the 4th and 8th week, the epidural fibrosis of group S was more serious than that of group C. Since the 2nd-week, the area of scar in group S was larger than that of group C. The number of fibroblasts and inflammatory cells in group S were larger than those of group C at early stage. But in later stage, there was no statistical significance between the two groups. It is concluded that SLR movement after laminectomy may promote the formation of epidural fibrosis and retard the maturity of scar. SLR movement can also aggravate scar adhesion.
基金Supported by National Basic Research Program of China(973 Program,Grant No.2012CB026006)
文摘The labyrinth seal in turbomachinery is a key element that restricts leakage flow among rotor-stator clearances from high-pressure regions to low-pressure regions. The fluid-induced forces on the rotor from seals during machine operation must be accurately quantified to predict their dynamic behavior effectively. To understand the fluid-induced force characteristics of the labyrinth seal more fully, the effects of four types of pre-swirls on the leakage, flow field, and fluid-induced force of a rotary straight-through labyrinth gas seal (RSTLGS) were numerically investigated using the proposed steady computational fluid dynamics (CFD) method based on the three-dimensional models of the RSTLGS. The leakage, flow field, and fluid-induced force of the RSTLGS for six axial pre-swirl velocities, four radial preswirl angles, four circumferential positive pre-swirl angles, and four circumferential negative pre-swirl angles were computed under the same geometrical parameters and operational conditions. Mesh analysis ensures the accuracy of the present steady CFD method. The numerical results show that the four types of pre-swirls influence the leakage, flow field, and fluid-induced force of the RSTLGS. The axial pre-swirl velocity remarkably inhibits the fluid-induced force, and the circumferential positive pre-swirl angle and circumferential negative pre-swirl angle remarkably promote the fluid-induced force. The effects of the radial pre-swirl angle on the fluid-induced force are complicated, and the pressure forces and viscous forces show the maximum or minimum values at a specific radial pre-swirl angle. The pre-swirl has a negligible impact on the leakage. The four types of pre-swirls affect the leakage, flow field, and fluidinduced force of the RSTLGS to varying degrees. The pre-swirl is the influence factor affecting the leakage, flow field, and fluid-induced force of the RSTLGS. The conclusions will help to understand the fluid-induced force of labyrinth seals more fully, by providing helpful suggestions for engineering practices and a theoretical basis to analyze the fluid–structure interaction of the seal-rotor system in future research.
文摘Various kinds of Riemann boundary value problems (BVPs) for analytic functions on closed curves or on open arc, doubly periodic Riemann BVPs, doubly quasi-periodic Riemann BVPs, and BVPs for polyanalytic functions have been widely investigated in [1-8]. The main ap- proach is to use the decomposition of polyanalytic functions and their generalization to transform the boundary value problems to their corresponding boundary value problems for analytic functions. Recently, inverse Riemann BVPs for generalized analytic functions or bianalytic functions have been investigated in [9-12]. In this paper, we consider a kind of Riemann BVP of non-normal type on the infinite straight line and discuss the solvable conditions and the general solution for it.
基金Project(KM200510772013) supported by the Science and Technology Development Program of Education Committee of Beijing City Project (2005-2007) supported by the Academic Innovative Team Program(Novel Sensor and Materials: Nanodevice and Nanomaterials) of Education Committee of Beijing City
文摘Straight carbon nanotubes (CNTs) were achieved by simple thermal chemical vapor deposition(STCVD) catalyzed by Mo-Fe alloy catalyst on silica supporting substrate at 700℃. High-resolution transmission electron microscopy images show that the straight CNTs are well graphitized with no attached amorphous carbon. Mo-Fe alloy catalyst particles play a very crucial role in the growth of straight CNTs. The straight carbon nanotubes contain much less defects than the curved nanotubes and might have potential applications for nanoelectrical devices in the future. The simple synthesis of straight CNTs may have benefit for large-scale productions.
文摘Extraction of the lower third molar is one of the most common procedures performed in oral surgery. In general, impacted tooth extraction involves sectioning the tooth’s crown and roots. In order to divide the impacted tooth so that it can be extracted, high-speed air turbine drills are frequently used. However, complications related to air turbine drills may occur. In this report, we propose an alternative tooth sectioning method that obviates the need for air turbine drill use by using a low-speed straight handpiece and carbide bur. A 21-year-old female patient presented to the institute’s dental hospital complaining of symptoms localized to the left lower third molar tooth that were suggestive of impaction. After physical examination, tooth extraction of the impacted left lower third molar was proposed and the patient consented to the procedure. The crown was divided using a conventional straight low-speed handpiece and carbide bur. This carbide bur can easily cut through the enamel of crown. On post-operative day number five, suture was removed and the wound was extremely clear. This technique could minimise intra-operative time and reduce the morbidity associated with air turbine drill assisted lower third molar extraction.
基金Funded by the National Natural Science Foundation of China(No.51001117)
文摘Ultra-high molecular weight polyethylene(UHMWPE) fiber/epoxy composites were fabricated by a vacuum assisted resin infused(VARI) processing technology. The curing condition of composites was at a cure temperature of 80 ℃ for 3h in a drying oven. The characteristics of 2.5D(shallow bend-joint and deep straight-joint) structure and 3D orthogonal structure were compared. The failure behavior, flexural strength, and microstructures of both composites were investigated. It was found that the flexural property was closely related to undulation angle θ. The flexural strength of 3D orthogonal structure composite was superior to the other two structures composites with the same weave parameters and resin.