目的:分析Brain Time Stack图像融合技术在CT中的应用。方法:选取2021年3月—2022年9月衡水市第四人民医院收治的50例CT检查患者作为研究对象。所有患者进行CT检查并进行Brain Time Stack后处理。比较四组不同部位CT值、标准差(SD)、信...目的:分析Brain Time Stack图像融合技术在CT中的应用。方法:选取2021年3月—2022年9月衡水市第四人民医院收治的50例CT检查患者作为研究对象。所有患者进行CT检查并进行Brain Time Stack后处理。比较四组不同部位CT值、标准差(SD)、信噪比(SNR)。比较四组图像主观质量评分。分析不同部位CT值、SD、SNR与图像主观质量评分的相关性。结果:B组的延髓、额叶灰质、额叶白质、小脑内侧、小脑外侧、颞肌肌肉CT值明显低于A组;C组的延髓、脑室、额叶白质、小脑内侧、小脑外侧、颞肌肌肉CT值高于A组;D组延髓、额叶灰质、颞肌肌肉CT值明显低于A组,脑室、额叶白质、小脑外侧CT值明显高于A组;C组延髓、额叶灰质、额叶白质、小脑内侧、小脑外侧、颞肌肌肉CT值明显高于B组;D组延髓、脑室、额叶白质、小脑内侧、小脑外侧、颞肌肌肉CT值明显高于B组;D组延髓、额叶灰质、额叶白质、小脑内侧、小脑外侧、颞肌肌肉CT值明显低于C组;D组脑室CT值明显高于C组,差异有统计学意义(P<0.05)。B组、C组、D组延髓、脑室、额叶灰质、额叶白质、小脑内侧、小脑外侧、颞肌肌肉SD值明显低于A组;C组延髓、脑室、额叶白质、小脑内侧、小脑外侧、颞肌肌肉SD值均明显高于B组;C组额叶灰质SD明显低于B组;D组延髓、脑室、额叶灰质、额叶白质、小脑内侧、小脑外侧、肌肉SD均明显低于B组、C组,差异有统计学意义(P<0.05)。B组、C组、D组延髓、脑室、额叶灰质、额叶白质、小脑内侧、小脑外侧、颞肌肌肉SNR均明显高于A组;C组、D组延髓、额叶灰质、额叶白质、小脑内侧、小脑外侧、颞肌肌肉SNR值明显高于B组;C组、D组脑室SNR明显低于B组;D组延髓、脑室、额叶灰质、额叶白质、小脑内侧、小脑外侧、颞肌肌肉SNR明显高于C组,差异有统计学意义(P<0.05)。D组图像主观质量评分最高,差异有统计学意义(P<0.05)。延髓、脑室、额叶灰质、额叶白质、小脑内侧、小脑外侧及颞肌肌肉SD与主观质量评分呈明显负相关,SNR与主观质量评分间呈明显正相关,差异有统计学意义(P<0.05)。结论:利用Brain Time Stack图像融合技术对头部CT扫描检查图像处理,动脉期结合前一期及后一期的图像数据在处理后具有更好的质量和更少的噪音。展开更多
In agreement with Titchmarsh’s theorem, we prove that dispersion relations are just the Fourier-transform of the identity, g(x′)=±Sgn(x′)g(x′), which defines the property of being a truncated functions at the...In agreement with Titchmarsh’s theorem, we prove that dispersion relations are just the Fourier-transform of the identity, g(x′)=±Sgn(x′)g(x′), which defines the property of being a truncated functions at the origin. On the other hand, we prove that the wave-function of a generalized diffraction in time problem is just the Fourier-transform of a truncated function. Consequently, the existence of dispersion relations for the diffraction in time wave-function follows. We derive these explicit dispersion relations.展开更多
This paper presents a hypothesis regarding the existence of time fused in spacetime, assuming that time possesses the properties of both a particle and a field. This duality is referred to as the field-particle of tim...This paper presents a hypothesis regarding the existence of time fused in spacetime, assuming that time possesses the properties of both a particle and a field. This duality is referred to as the field-particle of time (FPT). The analysis shows that when the FPT moves through matter, it causes time dilation. The FPT is also a significant element that appears in relativistic kinetic energy (KE = (γ - 1) · mc<sup>2</sup>). Accelerating matter to near the speed of light requires relativistic energy approaching infinity, which corresponds to the relativistic kinetic energy. Meanwhile, the potential energy (PE = mc<sup>2</sup>) from the rest mass remains constant. Then, the mass-energy equation can be rearranged in terms of PE and KE, as shown in E = (1 + (γ - 1)) · mc<sup>2</sup>. The relativistic energy of the FPT also directly affects the gravitational attraction of matter. It transfers energy to each other through spacetime. The analysis demonstrates that the gravitational force is inversely proportional to the distance squared, following Newton’s law of gravity, and it varies with the relative velocity of matter. The relationship equation between relative time and the gravitational constant indicates that a higher intensity of the gravitational field leads to a slower reference time for matter, in accordance with the general theory of relativity. A thought experiment presents a comparison of two atomic clocks placed in different locations. The first one is placed in a room temperature, around 25°C, on the surface of the Earth, and the second one is placed in high-density areas. The analysis, considering the presence of the FPT, shows that the reference time slows down in high-density areas. Therefore, the second clock must be noticeably slower than the first one, indicating the existence of the FPT passing through both atomic clocks at different speeds.展开更多
Objective To explore the application effect of time tracking platform in improving the reperfusion treatment of patients with acute ischemic stroke in primary hospitals. Methods and Results Patients with acute ischemi...Objective To explore the application effect of time tracking platform in improving the reperfusion treatment of patients with acute ischemic stroke in primary hospitals. Methods and Results Patients with acute ischemic stroke who carried out emergency intravenous thrombolysis and arterial thrombectomy in our hospital in 2021, 2022 and 2023 were selected. The time tracking mode was implemented, and the patients were recorded at each time node of the hospital and the whole-process digital management was conducted. Compared the mean DNT (Door to Needle Time) of intravenous thrombolysis in emergency stroke patients in 2021, 2022 and 2023, the total number of hospital cases within 4.5 h of onset, the total number of thrombolysis cases within 4.5 h of onset, the number of intravenous thrombolysis in 60 minutes of acute ischemic stroke, and the number of thrombolysis cases. The results show that from 2021 to 2023 our emergency stroke patients with intravenous thrombolysis average DNT shortened year by year, to the hospital within 4.5 h after the onset of the difference is statistically significant (all P < 0.05) conclusion through the application of stroke time tracking platform, is beneficial to shorten the treatment time of each link, can effectively reduce the hospital time delay, improve the rate of thrombolysis, improve the reperfusion of stroke centers in primary hospitals.展开更多
Newton already mentioned indivisible time in Principia. In 1899, Max Planck derived a unique time period from three universal constants: G, c, and ħ, and today this is known as the Planck time. The Planck time is of t...Newton already mentioned indivisible time in Principia. In 1899, Max Planck derived a unique time period from three universal constants: G, c, and ħ, and today this is known as the Planck time. The Planck time is of the order of about 10<sup>−44</sup> seconds while the best atomic clocks are down to 10<sup>−19</sup> seconds. An approach has recently been outlined that puts an upper limit on the quantization of time to 10<sup>−33</sup> seconds;this is, however, still far away from the Planck time. We demonstrate that the Planck time can easily be measured without any knowledge of any other physical constants. This is remarkable as this means we have demonstrated that the Planck time and therefore the Planck scale is real and detectable. It has taken more than 100 years to understand this. The reason for the breakthrough in Planck scale physics in recent years comes from understanding that G is a composite constant and that the true matter wavelength is the Compton wavelength rather than the de Broglie wavelength. When this is understood, the mysteries of the Planck scale can be uncovered. In this paper, we also demonstrate how to measure the number of Planck events in a gravitational mass without relying on any constants. This directly relates to a new and simple method for quantizing general relativity theory that we also will shortly discuss.展开更多
This study aims to evaluate the effect of serum concentration, synchronization time, and confluence degree on the synchronisation efficiency of goat fibroblast cycle. The results indicated that there was no difference...This study aims to evaluate the effect of serum concentration, synchronization time, and confluence degree on the synchronisation efficiency of goat fibroblast cycle. The results indicated that there was no difference in the percentage of nucleated fibroblasts in the G0/G1 stage between serum concentrations of 0.3% and 0.4% (83.89% and 82.69%, respectively, P > 0.05) as well as between serum concentrations of 0.2% and 0.5% (76.95% and 75.46%, respectively, P > 0.05). The percentage of nucleated fibroblasts in the G0/G1 stage was highest at the concentration of 0.3% and lowest in the control group (83.89% vs. 62.67%, P 0.05). The beneficial effect of high confluence was confirmed by the large percentage of nucleated fibroblasts at the G0/G1 stage. The 60% confluency was significantly lower than the 80% and 100% confluency (73.44%, 86.63%, and 87.17%, respectively, P < 0.05). The results indicate that the goat fibroblast cycle synchronization is the most effective at the serum concentration of 0.3%, 72 hours of synchronization and 100% confluency.展开更多
This paper presents a physically plausible and somewhat illuminating first step in extending the fundamental principles of mechanical stress and strain to space-time. Here the geometry of space-time, encoded in the me...This paper presents a physically plausible and somewhat illuminating first step in extending the fundamental principles of mechanical stress and strain to space-time. Here the geometry of space-time, encoded in the metric tensor, is considered to be made up of a dynamic lattice of extremely small, localized fields that form a perfectly elastic Lorentz symmetric space-time at the global (macroscopic) scale. This theoretical model of space-time at the Planck scale leads to a somewhat surprising result in which matter waves in curved space-time radiate thermal gravitational energy, as well as an equally intriguing relationship for the anomalous dispersion of light in a gravitational field.展开更多
Research on the use of EHR is contradictory since it presents contradicting results regarding the time spent documenting. There is research that supports the use of electronic records as a tool to speed documentation;...Research on the use of EHR is contradictory since it presents contradicting results regarding the time spent documenting. There is research that supports the use of electronic records as a tool to speed documentation;and research that found that it is time consuming. The purpose of this quantitative retrospective before-after project was to measure the impact of using the laboratory value flowsheet within the EHR on documentation time. The research question was: “Does the use of a laboratory value flowsheet in the EHR impact documentation time by primary care providers (PCPs)?” The theoretical framework utilized in this project was the Donabedian Model. The population in this research was the two PCPs in a small primary care clinic in the northwest of Puerto Rico. The sample was composed of all the encounters during the months of October 2019 and December 2019. The data was obtained through data mining and analyzed using SPSS 27. The evaluative outcome of this project is that there is a decrease in documentation time after implementation of the use of the laboratory value flowsheet in the EHR. However, patients per day increase therefore having an impact on the number of patients seen per day/week/month. The implications for clinical practice include the use of templates to improve workflow and documentation as well as decreasing documentation time while also increasing the number of patients seen per day. .展开更多
The frequency of any periodic event can be defined in terms of units of Time. Planck constructed a unit of time called the Plank time from other physical constants. Vyasa defined a natural unit of time, kshana, or mom...The frequency of any periodic event can be defined in terms of units of Time. Planck constructed a unit of time called the Plank time from other physical constants. Vyasa defined a natural unit of time, kshana, or moment based on the motion of a fundamental particle. It is the time taken by an elementary particle, to change its direction from east to north. According to Vyasa, kshana is discrete, exceedingly small, indivisible, and is a constant time quantum. When the intrinsic spin angular momentum of an electron was related to the angular momentum of a simple thin circular plate, spherical shell, and solid sphere model of an electron, we found that the value of kshana in seconds was equal to ten to a power of minus twenty-one second. The disc model for the spinning electron provides an accurate value of the number of kshanas per second as determined previously and compared with other spinning models of electrons. These results indicate that the disk-like model of spinning electrons is the correct model for electrons. Vyasa’s definition of kshana opens the possibility of a new foundation for the theory of physical time, and perspectives in theoretical and philosophical research.展开更多
文摘目的:分析Brain Time Stack图像融合技术在CT中的应用。方法:选取2021年3月—2022年9月衡水市第四人民医院收治的50例CT检查患者作为研究对象。所有患者进行CT检查并进行Brain Time Stack后处理。比较四组不同部位CT值、标准差(SD)、信噪比(SNR)。比较四组图像主观质量评分。分析不同部位CT值、SD、SNR与图像主观质量评分的相关性。结果:B组的延髓、额叶灰质、额叶白质、小脑内侧、小脑外侧、颞肌肌肉CT值明显低于A组;C组的延髓、脑室、额叶白质、小脑内侧、小脑外侧、颞肌肌肉CT值高于A组;D组延髓、额叶灰质、颞肌肌肉CT值明显低于A组,脑室、额叶白质、小脑外侧CT值明显高于A组;C组延髓、额叶灰质、额叶白质、小脑内侧、小脑外侧、颞肌肌肉CT值明显高于B组;D组延髓、脑室、额叶白质、小脑内侧、小脑外侧、颞肌肌肉CT值明显高于B组;D组延髓、额叶灰质、额叶白质、小脑内侧、小脑外侧、颞肌肌肉CT值明显低于C组;D组脑室CT值明显高于C组,差异有统计学意义(P<0.05)。B组、C组、D组延髓、脑室、额叶灰质、额叶白质、小脑内侧、小脑外侧、颞肌肌肉SD值明显低于A组;C组延髓、脑室、额叶白质、小脑内侧、小脑外侧、颞肌肌肉SD值均明显高于B组;C组额叶灰质SD明显低于B组;D组延髓、脑室、额叶灰质、额叶白质、小脑内侧、小脑外侧、肌肉SD均明显低于B组、C组,差异有统计学意义(P<0.05)。B组、C组、D组延髓、脑室、额叶灰质、额叶白质、小脑内侧、小脑外侧、颞肌肌肉SNR均明显高于A组;C组、D组延髓、额叶灰质、额叶白质、小脑内侧、小脑外侧、颞肌肌肉SNR值明显高于B组;C组、D组脑室SNR明显低于B组;D组延髓、脑室、额叶灰质、额叶白质、小脑内侧、小脑外侧、颞肌肌肉SNR明显高于C组,差异有统计学意义(P<0.05)。D组图像主观质量评分最高,差异有统计学意义(P<0.05)。延髓、脑室、额叶灰质、额叶白质、小脑内侧、小脑外侧及颞肌肌肉SD与主观质量评分呈明显负相关,SNR与主观质量评分间呈明显正相关,差异有统计学意义(P<0.05)。结论:利用Brain Time Stack图像融合技术对头部CT扫描检查图像处理,动脉期结合前一期及后一期的图像数据在处理后具有更好的质量和更少的噪音。
文摘In agreement with Titchmarsh’s theorem, we prove that dispersion relations are just the Fourier-transform of the identity, g(x′)=±Sgn(x′)g(x′), which defines the property of being a truncated functions at the origin. On the other hand, we prove that the wave-function of a generalized diffraction in time problem is just the Fourier-transform of a truncated function. Consequently, the existence of dispersion relations for the diffraction in time wave-function follows. We derive these explicit dispersion relations.
文摘This paper presents a hypothesis regarding the existence of time fused in spacetime, assuming that time possesses the properties of both a particle and a field. This duality is referred to as the field-particle of time (FPT). The analysis shows that when the FPT moves through matter, it causes time dilation. The FPT is also a significant element that appears in relativistic kinetic energy (KE = (γ - 1) · mc<sup>2</sup>). Accelerating matter to near the speed of light requires relativistic energy approaching infinity, which corresponds to the relativistic kinetic energy. Meanwhile, the potential energy (PE = mc<sup>2</sup>) from the rest mass remains constant. Then, the mass-energy equation can be rearranged in terms of PE and KE, as shown in E = (1 + (γ - 1)) · mc<sup>2</sup>. The relativistic energy of the FPT also directly affects the gravitational attraction of matter. It transfers energy to each other through spacetime. The analysis demonstrates that the gravitational force is inversely proportional to the distance squared, following Newton’s law of gravity, and it varies with the relative velocity of matter. The relationship equation between relative time and the gravitational constant indicates that a higher intensity of the gravitational field leads to a slower reference time for matter, in accordance with the general theory of relativity. A thought experiment presents a comparison of two atomic clocks placed in different locations. The first one is placed in a room temperature, around 25°C, on the surface of the Earth, and the second one is placed in high-density areas. The analysis, considering the presence of the FPT, shows that the reference time slows down in high-density areas. Therefore, the second clock must be noticeably slower than the first one, indicating the existence of the FPT passing through both atomic clocks at different speeds.
文摘Objective To explore the application effect of time tracking platform in improving the reperfusion treatment of patients with acute ischemic stroke in primary hospitals. Methods and Results Patients with acute ischemic stroke who carried out emergency intravenous thrombolysis and arterial thrombectomy in our hospital in 2021, 2022 and 2023 were selected. The time tracking mode was implemented, and the patients were recorded at each time node of the hospital and the whole-process digital management was conducted. Compared the mean DNT (Door to Needle Time) of intravenous thrombolysis in emergency stroke patients in 2021, 2022 and 2023, the total number of hospital cases within 4.5 h of onset, the total number of thrombolysis cases within 4.5 h of onset, the number of intravenous thrombolysis in 60 minutes of acute ischemic stroke, and the number of thrombolysis cases. The results show that from 2021 to 2023 our emergency stroke patients with intravenous thrombolysis average DNT shortened year by year, to the hospital within 4.5 h after the onset of the difference is statistically significant (all P < 0.05) conclusion through the application of stroke time tracking platform, is beneficial to shorten the treatment time of each link, can effectively reduce the hospital time delay, improve the rate of thrombolysis, improve the reperfusion of stroke centers in primary hospitals.
文摘Newton already mentioned indivisible time in Principia. In 1899, Max Planck derived a unique time period from three universal constants: G, c, and ħ, and today this is known as the Planck time. The Planck time is of the order of about 10<sup>−44</sup> seconds while the best atomic clocks are down to 10<sup>−19</sup> seconds. An approach has recently been outlined that puts an upper limit on the quantization of time to 10<sup>−33</sup> seconds;this is, however, still far away from the Planck time. We demonstrate that the Planck time can easily be measured without any knowledge of any other physical constants. This is remarkable as this means we have demonstrated that the Planck time and therefore the Planck scale is real and detectable. It has taken more than 100 years to understand this. The reason for the breakthrough in Planck scale physics in recent years comes from understanding that G is a composite constant and that the true matter wavelength is the Compton wavelength rather than the de Broglie wavelength. When this is understood, the mysteries of the Planck scale can be uncovered. In this paper, we also demonstrate how to measure the number of Planck events in a gravitational mass without relying on any constants. This directly relates to a new and simple method for quantizing general relativity theory that we also will shortly discuss.
文摘This study aims to evaluate the effect of serum concentration, synchronization time, and confluence degree on the synchronisation efficiency of goat fibroblast cycle. The results indicated that there was no difference in the percentage of nucleated fibroblasts in the G0/G1 stage between serum concentrations of 0.3% and 0.4% (83.89% and 82.69%, respectively, P > 0.05) as well as between serum concentrations of 0.2% and 0.5% (76.95% and 75.46%, respectively, P > 0.05). The percentage of nucleated fibroblasts in the G0/G1 stage was highest at the concentration of 0.3% and lowest in the control group (83.89% vs. 62.67%, P 0.05). The beneficial effect of high confluence was confirmed by the large percentage of nucleated fibroblasts at the G0/G1 stage. The 60% confluency was significantly lower than the 80% and 100% confluency (73.44%, 86.63%, and 87.17%, respectively, P < 0.05). The results indicate that the goat fibroblast cycle synchronization is the most effective at the serum concentration of 0.3%, 72 hours of synchronization and 100% confluency.
文摘This paper presents a physically plausible and somewhat illuminating first step in extending the fundamental principles of mechanical stress and strain to space-time. Here the geometry of space-time, encoded in the metric tensor, is considered to be made up of a dynamic lattice of extremely small, localized fields that form a perfectly elastic Lorentz symmetric space-time at the global (macroscopic) scale. This theoretical model of space-time at the Planck scale leads to a somewhat surprising result in which matter waves in curved space-time radiate thermal gravitational energy, as well as an equally intriguing relationship for the anomalous dispersion of light in a gravitational field.
文摘Research on the use of EHR is contradictory since it presents contradicting results regarding the time spent documenting. There is research that supports the use of electronic records as a tool to speed documentation;and research that found that it is time consuming. The purpose of this quantitative retrospective before-after project was to measure the impact of using the laboratory value flowsheet within the EHR on documentation time. The research question was: “Does the use of a laboratory value flowsheet in the EHR impact documentation time by primary care providers (PCPs)?” The theoretical framework utilized in this project was the Donabedian Model. The population in this research was the two PCPs in a small primary care clinic in the northwest of Puerto Rico. The sample was composed of all the encounters during the months of October 2019 and December 2019. The data was obtained through data mining and analyzed using SPSS 27. The evaluative outcome of this project is that there is a decrease in documentation time after implementation of the use of the laboratory value flowsheet in the EHR. However, patients per day increase therefore having an impact on the number of patients seen per day/week/month. The implications for clinical practice include the use of templates to improve workflow and documentation as well as decreasing documentation time while also increasing the number of patients seen per day. .
文摘The frequency of any periodic event can be defined in terms of units of Time. Planck constructed a unit of time called the Plank time from other physical constants. Vyasa defined a natural unit of time, kshana, or moment based on the motion of a fundamental particle. It is the time taken by an elementary particle, to change its direction from east to north. According to Vyasa, kshana is discrete, exceedingly small, indivisible, and is a constant time quantum. When the intrinsic spin angular momentum of an electron was related to the angular momentum of a simple thin circular plate, spherical shell, and solid sphere model of an electron, we found that the value of kshana in seconds was equal to ten to a power of minus twenty-one second. The disc model for the spinning electron provides an accurate value of the number of kshanas per second as determined previously and compared with other spinning models of electrons. These results indicate that the disk-like model of spinning electrons is the correct model for electrons. Vyasa’s definition of kshana opens the possibility of a new foundation for the theory of physical time, and perspectives in theoretical and philosophical research.