Marine accidents often result in significant losses of human life, environmental damage, and property destruction. Additionally, ships and offshore plants are large-scale and complex systems, making safety assessments...Marine accidents often result in significant losses of human life, environmental damage, and property destruction. Additionally, ships and offshore plants are large-scale and complex systems, making safety assessments challenging. However, the advent of onboard electronic systems has made it possible to monitor and respond more effectively. These new technologies can enhance safety levels while reducing the workload on crews. In this paper, authors analyze recent accidents involving ships with high structures above the water, such as car carriers or RoPax vessels, and propose preventive safety indicators to help prevent similar accidents from recurring.展开更多
SHIP-1 is an SH2 domain containing inositol-5-phosphatase that appears to be a negative regulator of hematopoiesis. To the potential effects of SHIP-1 on MMP2 secretion and migration of cancer cells, three murine SHIP...SHIP-1 is an SH2 domain containing inositol-5-phosphatase that appears to be a negative regulator of hematopoiesis. To the potential effects of SHIP-1 on MMP2 secretion and migration of cancer cells, three murine SHIP-1 mutants were made: △SH2-SHIP-1, △Ptase-SHIP-1, △Cter-SHIP-1. These mutant forms were subcloned as well as the wild type (WT) of murine SHIP-1 cDNA were subcloned into pcDNA3 expression vector, then transfected into and overexpressed SHIP-1 and its mutants in a Src-transformed 3Y1 cellline (SR3Y1). The results showed that overexpression of wild type of SHIP-1 does not affect the MMP2 secretion in both SR3Y1 and 3Y1 cells, but can induce MMP9 secretion, while either WT SHIP-1, the SH2 domain, phosphatase domain, or C terminus deletion mutants could significantly block the MMP2 and MMP9 secretion in SR3Y1 cells and suppress cell invasion ability. The results confirmed SHIP-1 as a negative regulator for cell migration and invasion in transformed cells, and implied that it may function through each of its three domains.展开更多
文摘Marine accidents often result in significant losses of human life, environmental damage, and property destruction. Additionally, ships and offshore plants are large-scale and complex systems, making safety assessments challenging. However, the advent of onboard electronic systems has made it possible to monitor and respond more effectively. These new technologies can enhance safety levels while reducing the workload on crews. In this paper, authors analyze recent accidents involving ships with high structures above the water, such as car carriers or RoPax vessels, and propose preventive safety indicators to help prevent similar accidents from recurring.
基金the Sasagawa Medical Fellowship from Japan-Sino Medical Association with funds from the Nippon Foundation.
文摘SHIP-1 is an SH2 domain containing inositol-5-phosphatase that appears to be a negative regulator of hematopoiesis. To the potential effects of SHIP-1 on MMP2 secretion and migration of cancer cells, three murine SHIP-1 mutants were made: △SH2-SHIP-1, △Ptase-SHIP-1, △Cter-SHIP-1. These mutant forms were subcloned as well as the wild type (WT) of murine SHIP-1 cDNA were subcloned into pcDNA3 expression vector, then transfected into and overexpressed SHIP-1 and its mutants in a Src-transformed 3Y1 cellline (SR3Y1). The results showed that overexpression of wild type of SHIP-1 does not affect the MMP2 secretion in both SR3Y1 and 3Y1 cells, but can induce MMP9 secretion, while either WT SHIP-1, the SH2 domain, phosphatase domain, or C terminus deletion mutants could significantly block the MMP2 and MMP9 secretion in SR3Y1 cells and suppress cell invasion ability. The results confirmed SHIP-1 as a negative regulator for cell migration and invasion in transformed cells, and implied that it may function through each of its three domains.