Double?roller clamping spinning(DRCS) is a new process for forming a thin?walled cylinder with a complex surface flange. The process requires a small spinning force,and can visibly improve forming quality and producti...Double?roller clamping spinning(DRCS) is a new process for forming a thin?walled cylinder with a complex surface flange. The process requires a small spinning force,and can visibly improve forming quality and production e ciency. However,the deformation mechanism of the process has not been completely understood. Therefore,both a finite element numerical simulation and experimental research on the DRCS process are carried out. The results show that both radial force and axial force dominate the forming process of DRCS. The deformation area elongates along the radial direction and bends along the axial direction under the action of the two forces. Both the outer edge and round corner of the flange show the tangential tensile stress and radial compressive stress. The middle region shows tensile tangential stress and radial stress,while the inner edge shows compressive tangential stress and radial stress. Tan?gential tensile strain causes a wall thickness reduction in the outer edge and middle regions of the flange. The large compressive thickness strain causes material accumulation and thus,an increase in the wall thickness of the round corner. Because of bending deformation,the round corner shows a large radial tensile strain in addition. The inner edge of the flange shows small radial compressive strain and tensile strain in thickness. Thus,the wall thickness on the inner edge of the flange continues to increase,although the increment is small. Furthermore,microstructure analysis and tensile test results show that the flanged thin?walled cylinder formed by DRCS has good mechanical properties. The results provide instructions for the application of the DRCS process.展开更多
To resolve the deformation problem for thin-walled aero-parts in the actual production, this paper simulates the effect of the tool-path on the machining accuracy of the thin-walled frame. The frame is shaped in the p...To resolve the deformation problem for thin-walled aero-parts in the actual production, this paper simulates the effect of the tool-path on the machining accuracy of the thin-walled frame. The frame is shaped in the part milling under a given clamping condition by using the three-dimensional finite element method (FEM). Result shows that the sidewall deformation has a big difference if only the tool-path changes. When the tool-path from the outside to the inside is used, the machining deformation is smaller than another three kinds of toolpaths. Simulation results are compared with experimental data, and the correctness of the simulation is verified.Reasonable processing paths can be found by FEM.展开更多
Parallel kinematic machines have drawn considerable attention and have been widely used in some special fields.However,high precision is still one of the challenges when they are used for advanced machine tools.One of...Parallel kinematic machines have drawn considerable attention and have been widely used in some special fields.However,high precision is still one of the challenges when they are used for advanced machine tools.One of the main reasons is that the kinematic chains of parallel kinematic machines are composed of elongated links that can easily suffer deformations,especially at high speeds and under heavy loads.A 3-RRR parallel kinematic machine is taken as a study object for investigating its accuracy with the consideration of the deformations of its links during the motion process.Based on the dynamic model constructed by the Newton-Euler method,all the inertia loads and constraint forces of the links are computed and their deformations are derived.Then the kinematic errors of the machine are derived with the consideration of the deformations of the links.Through further derivation,the accuracy of the machine is given in a simple explicit expression,which will be helpful to increase the calculating speed.The accuracy of this machine when following a selected circle path is simulated.The influences of magnitude of the maximum acceleration and external loads on the running accuracy of the machine are investigated.The results show that the external loads will deteriorate the accuracy of the machine tremendously when their direction coincides with the direction of the worst stiffness of the machine.The proposed method provides a solution for predicting the running accuracy of the parallel kinematic machines and can also be used in their design optimization as well as selection of suitable running parameters.展开更多
The aim of this work is to simulate thermal deformation of tool system and investigate the influence of cutting parameters on it in single-point diamond turning(SPDT) of aluminum alloy. The experiments with various cu...The aim of this work is to simulate thermal deformation of tool system and investigate the influence of cutting parameters on it in single-point diamond turning(SPDT) of aluminum alloy. The experiments with various cutting parameters were conducted. Cutting temperature was measured by FLIR A315 infrared thermal imager. Tool wear was measured by scanning electron microscope(SEM). The numerical model of heat flux considering tool wear generated in cutting zone was established. Then two-step finite element method(FEM) simulations matching the experimental conditions were carried out to simulate the thermal deformation. In addition, the tests of deformation of tool system were performed to verify previous simulation results. And then the influence of cutting parameters on thermal deformation was investigated. The results show that the temperature and thermal deformation from simulations agree well with the results from experiments in the same conditions. The maximum thermal deformation of tool reaches to 7 μm. The average flank wear width and cutting speed are the dominant factors affecting thermal deformation, and the effective way to decrease the thermal deformation of tool is to control the tool wear and the cutting speed.展开更多
In the casting process,in order to compensate for the solidification shrinkage to obtain higher dimensional accuracy of the casting,it is often necessary to modify the original design of castings,and a suitable compen...In the casting process,in order to compensate for the solidification shrinkage to obtain higher dimensional accuracy of the casting,it is often necessary to modify the original design of castings,and a suitable compensation method has a decisive impact on the dimensional accuracy of the actual casting.In this study,based on solidification simulation,a design method of reverse deformation is proposed,and two compensation methods,empirical compensation and direct reverse deformation,are implemented.The simulation results show that the empirical compensation method has problems such as difficulty in determining the parameters and satisfaction of both the overall and local accuracy at the same time;while based on the simulation results for each node of the casting,the direct reverse deformation design achieves the design with shape.In addition,the casting model can be optimized through iterative revisions,so that higher dimensional accuracy can be continuously obtained in the subsequent design process.Therefore,the direct reverse deformation design is more accurate and reasonable compared to empirical compensation method.展开更多
The current research of machine center accuracy in workspace mainly focuses on the poor geometric error subjected to thermal and gravity load while in operation, however, there are little researches focusing on the ef...The current research of machine center accuracy in workspace mainly focuses on the poor geometric error subjected to thermal and gravity load while in operation, however, there are little researches focusing on the effect of machine center elastic deformations on workspace volume. Therefore, a method called pre-deformation for assembly performance is presented. This method is technically based on the characteristics of machine tool assembly and collaborative computer-aided engineering (CAE) analysis. The research goal is to enhance assembly performance, including straightness, positioning, and angular errors, to realize the precision of the machine tool design. A vertical machine center is taken as an example to illustrate the proposed method. The concept of travel error is defined to obtain the law of the guide surface. The machine center assembly performance is analyzed under cold condition and thermal balance condition to establish the function of pre-deformation. Then, the guide surface in normal direction is processed with the pre-deformation function, and the machine tool assembly performance is measured using a laser interferometer. The measuring results show that the straightness deviation of the Z component in the Y-direction is 158.9% of the allowable value primarily because of the gravity of the spindle head, and the straightness of the X and Y components is minimal. When the machine tool is processed in pre-deformation, the straightness of the Z axis moving component is reduced to 91.2%. This research proposes a pre-deformation machine center assembly method which has sufficient capacity to improving assembly accuracy of machine centers.展开更多
In many deformation analyses,the partial derivatives at the interpolated scattered data points are required.In this paper,the Gaussian Radial Basis Functions(GRBF)is proposed for the interpolation and differentiation ...In many deformation analyses,the partial derivatives at the interpolated scattered data points are required.In this paper,the Gaussian Radial Basis Functions(GRBF)is proposed for the interpolation and differentiation of the scattered data in the vertical deformation analysis.For the optimal selection of the shape parameter,which is crucial in the GRBF interpolation,two methods are used:the Power Gaussian Radial Basis Functions(PGRBF)and Leave One Out Cross Validation(LOOCV)(LGRBF).We compared the PGRBF and LGRBF to the traditional interpolation methods such as the Finite Element Method(FEM),polynomials,Moving Least Squares(MLS),and the usual GRBF in both the simulated and actual Interferometric Synthetic Aperture Radar(InSAR)data.The estimated results showed that the surface interpolation accuracy was greatly improved by LGRBF and PGRBF methods in comparison withFEM,polynomial,and MLS methods.Finally,LGRBF and PGRBF interpolation methods are used to compute invariant vertical deformation parameters,i.e.,changes in Gaussian and mean Curvatures in the Groningen area in the North of Netherlands.展开更多
When multiple ground-based radars(GB-rads)are utilized together to resolve three-dimensional(3-D)deformations,the resolving accuracy is related with the measurement geometry constructed by these radars.This paper focu...When multiple ground-based radars(GB-rads)are utilized together to resolve three-dimensional(3-D)deformations,the resolving accuracy is related with the measurement geometry constructed by these radars.This paper focuses on constrained geometry analysis to resolve 3-D deformations from three GB-rads.The geometric dilution of precision(GDOP)is utilized to evaluate 3-D deformation accuracy of a single target,and its theoretical equation is derived by building a simplified 3-D coordinate system.Then for a 3-D scene,its optimal accuracy problem is converted into determining the minimum value of an objective function with a boundary constraint.The genetic algorithm is utilized to solve this constrained optimization problem.Numerical simulations are made to validate the correctness of the theoretical analysis results.展开更多
ObjectiveTo highlight the role of hyper accuracy three-dimensional(3D)reconstruction in facilitating surgical planning and guiding selective clamping during robot-assisted partial nephrectomy(RAPN).MethodsA transperit...ObjectiveTo highlight the role of hyper accuracy three-dimensional(3D)reconstruction in facilitating surgical planning and guiding selective clamping during robot-assisted partial nephrectomy(RAPN).MethodsA transperitoneal RAPN was performed in a 62-year-old male patient presenting with a 4 cm right anterior interpolar renal mass(R.E.N.A.L nephrometry score 7A).An abnormal vasculature was observed,with a single renal vein and two right renal arteries originating superiorly to the vein and anterior,when dividing in their segmental branches.According to the hyper accuracy 3D(HA3D^(®))rainbow model(MEDICS Srl,Turin,Italy),one branch belonging to one of the segmental arteries was feeding the tumor.This allowed for an accurate prediction of the area vascularized by each arterial branch.The 3D model was included in the intraoperative console view during the whole procedure,using the TilePro feature.A step-by-step explanation of the procedure is provided in the video attached to the present article.ResultsThe operative time was 90 min with a warm ischemia time on selective clamping of 13 min.Estimated blood loss was 180 mL.No intraoperative complication was encountered and no drain was placed at the end of the procedure.The patient was discharged on postoperative Day 2,without any early postoperative complications.The final pathology report showed a pathological tumor stage 1 clear cell renal cell carcinoma with negative surgical margins.ConclusionThe present study and the attached video illustrate the value of 3D rainbow model during the planning and execution of a RAPN with selective clamping.It shows how the surgeon can rely on this model to be more efficient by avoiding unnecessary surgical steps,and to safely adopt a“selective”clamping strategy that can translate in minimal functional impact.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.51305333)Shaanxi Provincial Key Science and Technology Industrial Research Plan of China(Grant No.2014K07-23)Shaanxi Provincial Cooperation Project of China(Grant No.2014SJ-15)
文摘Double?roller clamping spinning(DRCS) is a new process for forming a thin?walled cylinder with a complex surface flange. The process requires a small spinning force,and can visibly improve forming quality and production e ciency. However,the deformation mechanism of the process has not been completely understood. Therefore,both a finite element numerical simulation and experimental research on the DRCS process are carried out. The results show that both radial force and axial force dominate the forming process of DRCS. The deformation area elongates along the radial direction and bends along the axial direction under the action of the two forces. Both the outer edge and round corner of the flange show the tangential tensile stress and radial compressive stress. The middle region shows tensile tangential stress and radial stress,while the inner edge shows compressive tangential stress and radial stress. Tan?gential tensile strain causes a wall thickness reduction in the outer edge and middle regions of the flange. The large compressive thickness strain causes material accumulation and thus,an increase in the wall thickness of the round corner. Because of bending deformation,the round corner shows a large radial tensile strain in addition. The inner edge of the flange shows small radial compressive strain and tensile strain in thickness. Thus,the wall thickness on the inner edge of the flange continues to increase,although the increment is small. Furthermore,microstructure analysis and tensile test results show that the flanged thin?walled cylinder formed by DRCS has good mechanical properties. The results provide instructions for the application of the DRCS process.
文摘To resolve the deformation problem for thin-walled aero-parts in the actual production, this paper simulates the effect of the tool-path on the machining accuracy of the thin-walled frame. The frame is shaped in the part milling under a given clamping condition by using the three-dimensional finite element method (FEM). Result shows that the sidewall deformation has a big difference if only the tool-path changes. When the tool-path from the outside to the inside is used, the machining deformation is smaller than another three kinds of toolpaths. Simulation results are compared with experimental data, and the correctness of the simulation is verified.Reasonable processing paths can be found by FEM.
基金Supported by National Natural Science Foundation of China(Grant No.51272560)National Basic Research Program of China(973 Program,Grant No.2011CB302404)National Science Foundation for Distinguished Young Scholars of China(Grant No.51225503)
文摘Parallel kinematic machines have drawn considerable attention and have been widely used in some special fields.However,high precision is still one of the challenges when they are used for advanced machine tools.One of the main reasons is that the kinematic chains of parallel kinematic machines are composed of elongated links that can easily suffer deformations,especially at high speeds and under heavy loads.A 3-RRR parallel kinematic machine is taken as a study object for investigating its accuracy with the consideration of the deformations of its links during the motion process.Based on the dynamic model constructed by the Newton-Euler method,all the inertia loads and constraint forces of the links are computed and their deformations are derived.Then the kinematic errors of the machine are derived with the consideration of the deformations of the links.Through further derivation,the accuracy of the machine is given in a simple explicit expression,which will be helpful to increase the calculating speed.The accuracy of this machine when following a selected circle path is simulated.The influences of magnitude of the maximum acceleration and external loads on the running accuracy of the machine are investigated.The results show that the external loads will deteriorate the accuracy of the machine tremendously when their direction coincides with the direction of the worst stiffness of the machine.The proposed method provides a solution for predicting the running accuracy of the parallel kinematic machines and can also be used in their design optimization as well as selection of suitable running parameters.
基金Project(51175122)supported by the National Natural Science Foundation of China
文摘The aim of this work is to simulate thermal deformation of tool system and investigate the influence of cutting parameters on it in single-point diamond turning(SPDT) of aluminum alloy. The experiments with various cutting parameters were conducted. Cutting temperature was measured by FLIR A315 infrared thermal imager. Tool wear was measured by scanning electron microscope(SEM). The numerical model of heat flux considering tool wear generated in cutting zone was established. Then two-step finite element method(FEM) simulations matching the experimental conditions were carried out to simulate the thermal deformation. In addition, the tests of deformation of tool system were performed to verify previous simulation results. And then the influence of cutting parameters on thermal deformation was investigated. The results show that the temperature and thermal deformation from simulations agree well with the results from experiments in the same conditions. The maximum thermal deformation of tool reaches to 7 μm. The average flank wear width and cutting speed are the dominant factors affecting thermal deformation, and the effective way to decrease the thermal deformation of tool is to control the tool wear and the cutting speed.
基金This study was financially supported by the National Key Research and Development Program of China(No.2020YFB2008302).
文摘In the casting process,in order to compensate for the solidification shrinkage to obtain higher dimensional accuracy of the casting,it is often necessary to modify the original design of castings,and a suitable compensation method has a decisive impact on the dimensional accuracy of the actual casting.In this study,based on solidification simulation,a design method of reverse deformation is proposed,and two compensation methods,empirical compensation and direct reverse deformation,are implemented.The simulation results show that the empirical compensation method has problems such as difficulty in determining the parameters and satisfaction of both the overall and local accuracy at the same time;while based on the simulation results for each node of the casting,the direct reverse deformation design achieves the design with shape.In addition,the casting model can be optimized through iterative revisions,so that higher dimensional accuracy can be continuously obtained in the subsequent design process.Therefore,the direct reverse deformation design is more accurate and reasonable compared to empirical compensation method.
基金Supported by National Key Technology Support Program of China(Grant No.2011BAF11B03)National Science and Technology Major Projects of China(Grant No.2012ZX04010-011)
文摘The current research of machine center accuracy in workspace mainly focuses on the poor geometric error subjected to thermal and gravity load while in operation, however, there are little researches focusing on the effect of machine center elastic deformations on workspace volume. Therefore, a method called pre-deformation for assembly performance is presented. This method is technically based on the characteristics of machine tool assembly and collaborative computer-aided engineering (CAE) analysis. The research goal is to enhance assembly performance, including straightness, positioning, and angular errors, to realize the precision of the machine tool design. A vertical machine center is taken as an example to illustrate the proposed method. The concept of travel error is defined to obtain the law of the guide surface. The machine center assembly performance is analyzed under cold condition and thermal balance condition to establish the function of pre-deformation. Then, the guide surface in normal direction is processed with the pre-deformation function, and the machine tool assembly performance is measured using a laser interferometer. The measuring results show that the straightness deviation of the Z component in the Y-direction is 158.9% of the allowable value primarily because of the gravity of the spindle head, and the straightness of the X and Y components is minimal. When the machine tool is processed in pre-deformation, the straightness of the Z axis moving component is reduced to 91.2%. This research proposes a pre-deformation machine center assembly method which has sufficient capacity to improving assembly accuracy of machine centers.
文摘In many deformation analyses,the partial derivatives at the interpolated scattered data points are required.In this paper,the Gaussian Radial Basis Functions(GRBF)is proposed for the interpolation and differentiation of the scattered data in the vertical deformation analysis.For the optimal selection of the shape parameter,which is crucial in the GRBF interpolation,two methods are used:the Power Gaussian Radial Basis Functions(PGRBF)and Leave One Out Cross Validation(LOOCV)(LGRBF).We compared the PGRBF and LGRBF to the traditional interpolation methods such as the Finite Element Method(FEM),polynomials,Moving Least Squares(MLS),and the usual GRBF in both the simulated and actual Interferometric Synthetic Aperture Radar(InSAR)data.The estimated results showed that the surface interpolation accuracy was greatly improved by LGRBF and PGRBF methods in comparison withFEM,polynomial,and MLS methods.Finally,LGRBF and PGRBF interpolation methods are used to compute invariant vertical deformation parameters,i.e.,changes in Gaussian and mean Curvatures in the Groningen area in the North of Netherlands.
基金supported by the National Natural Science Foundation of China(61960206009,61971037,31727901)the Natural Science Foundation of Chongqing+1 种基金China(2020jcyj-jq X0008)Chongqing Key Laboratory of Geological Environment Monitoring and Disaster Early-warning in Three Gorges Reservoir Area(ZD2020A0101)。
文摘When multiple ground-based radars(GB-rads)are utilized together to resolve three-dimensional(3-D)deformations,the resolving accuracy is related with the measurement geometry constructed by these radars.This paper focuses on constrained geometry analysis to resolve 3-D deformations from three GB-rads.The geometric dilution of precision(GDOP)is utilized to evaluate 3-D deformation accuracy of a single target,and its theoretical equation is derived by building a simplified 3-D coordinate system.Then for a 3-D scene,its optimal accuracy problem is converted into determining the minimum value of an objective function with a boundary constraint.The genetic algorithm is utilized to solve this constrained optimization problem.Numerical simulations are made to validate the correctness of the theoretical analysis results.
文摘ObjectiveTo highlight the role of hyper accuracy three-dimensional(3D)reconstruction in facilitating surgical planning and guiding selective clamping during robot-assisted partial nephrectomy(RAPN).MethodsA transperitoneal RAPN was performed in a 62-year-old male patient presenting with a 4 cm right anterior interpolar renal mass(R.E.N.A.L nephrometry score 7A).An abnormal vasculature was observed,with a single renal vein and two right renal arteries originating superiorly to the vein and anterior,when dividing in their segmental branches.According to the hyper accuracy 3D(HA3D^(®))rainbow model(MEDICS Srl,Turin,Italy),one branch belonging to one of the segmental arteries was feeding the tumor.This allowed for an accurate prediction of the area vascularized by each arterial branch.The 3D model was included in the intraoperative console view during the whole procedure,using the TilePro feature.A step-by-step explanation of the procedure is provided in the video attached to the present article.ResultsThe operative time was 90 min with a warm ischemia time on selective clamping of 13 min.Estimated blood loss was 180 mL.No intraoperative complication was encountered and no drain was placed at the end of the procedure.The patient was discharged on postoperative Day 2,without any early postoperative complications.The final pathology report showed a pathological tumor stage 1 clear cell renal cell carcinoma with negative surgical margins.ConclusionThe present study and the attached video illustrate the value of 3D rainbow model during the planning and execution of a RAPN with selective clamping.It shows how the surgeon can rely on this model to be more efficient by avoiding unnecessary surgical steps,and to safely adopt a“selective”clamping strategy that can translate in minimal functional impact.