期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
CentroidNet:轻量快速的乳腺癌Ki67细胞核中心点检测模型
被引量:
1
1
作者
文可
金旭
+2 位作者
安虹
何杰
王珏
《中国图象图形学报》
CSCD
北大核心
2023年第4期1119-1133,共15页
目的Ki67分数是乳腺癌预后评估的重要指标,计算该分数的关键步骤是检测阴性与阳性癌细胞核。人工检测面临疲劳与主观差异的问题。卷积神经网络有望实现高质量、自动化的细胞核检测,然而需要病理专家为其标注细胞核。为了减轻标注的工作...
目的Ki67分数是乳腺癌预后评估的重要指标,计算该分数的关键步骤是检测阴性与阳性癌细胞核。人工检测面临疲劳与主观差异的问题。卷积神经网络有望实现高质量、自动化的细胞核检测,然而需要病理专家为其标注细胞核。为了减轻标注的工作量,不少研究者提出以中心点标注训练卷积神经网络。然而这些方法采用过于复杂的卷积神经网络和后处理流程,未能充分提高易用性和效率、发挥卷积神经网络的质量。对此,提出CentroidNet模型,旨在提高中心点检测的质量、效率和易用性。方法CentroidNet模型在图像上放置均匀排布的锚点,为每个锚点预测一个候选点,一部分候选点通过基于阈值的筛选策略成为预测点。本文提出最近锚点匹配策略用于生成训练标签,既保证了端到端推理,又规避了其他一对一标签匹配算法所具有的标签抖动问题。本文建议锚点间距应尽可能接近训练集答案点间最短距离的第一百分位数,并指出这样的锚点间距能够在前景标签数、坐标回归难度与效率之间取得良好的平衡。本文在设计卷积神经网络的结构时,没有采纳广为使用的U-Net或特征金字塔(feature pyramid network,FPN)中的多级上采样与旁路连接,反而提高了质量和效率。结果本文在BCData数据集上评估CentroidNet模型的质量与效率。BCData是目前规模最大的、公开的乳腺癌Ki67癌细胞核中心点检测数据集。在质量方面,CentroidNet取得的综合F1分数为0.8791,媲美当前的最高质量。在效率方面,CentroidNet的推理速度为12.96 ms/幅、显存占用为138.8 MB/幅,达到了当前最高的效率,远低于若干主流或最新的模型。结论CentroidNet具有高质量、高效率和高易用性;与现有同类模型相比,进一步提高了乳腺癌Ki67细胞核中心点检测的可行性。
展开更多
关键词
乳腺癌
Ki67分数
中心点检测
一对一标签匹配
锚点
原文传递
题名
CentroidNet:轻量快速的乳腺癌Ki67细胞核中心点检测模型
被引量:
1
1
作者
文可
金旭
安虹
何杰
王珏
机构
中国科学技术大学计算机科学与技术学院
中国科学技术大学附属第一医院病理科
出处
《中国图象图形学报》
CSCD
北大核心
2023年第4期1119-1133,共15页
基金
中央高校基本科研业务费专项资金资助(YD2150002001)。
文摘
目的Ki67分数是乳腺癌预后评估的重要指标,计算该分数的关键步骤是检测阴性与阳性癌细胞核。人工检测面临疲劳与主观差异的问题。卷积神经网络有望实现高质量、自动化的细胞核检测,然而需要病理专家为其标注细胞核。为了减轻标注的工作量,不少研究者提出以中心点标注训练卷积神经网络。然而这些方法采用过于复杂的卷积神经网络和后处理流程,未能充分提高易用性和效率、发挥卷积神经网络的质量。对此,提出CentroidNet模型,旨在提高中心点检测的质量、效率和易用性。方法CentroidNet模型在图像上放置均匀排布的锚点,为每个锚点预测一个候选点,一部分候选点通过基于阈值的筛选策略成为预测点。本文提出最近锚点匹配策略用于生成训练标签,既保证了端到端推理,又规避了其他一对一标签匹配算法所具有的标签抖动问题。本文建议锚点间距应尽可能接近训练集答案点间最短距离的第一百分位数,并指出这样的锚点间距能够在前景标签数、坐标回归难度与效率之间取得良好的平衡。本文在设计卷积神经网络的结构时,没有采纳广为使用的U-Net或特征金字塔(feature pyramid network,FPN)中的多级上采样与旁路连接,反而提高了质量和效率。结果本文在BCData数据集上评估CentroidNet模型的质量与效率。BCData是目前规模最大的、公开的乳腺癌Ki67癌细胞核中心点检测数据集。在质量方面,CentroidNet取得的综合F1分数为0.8791,媲美当前的最高质量。在效率方面,CentroidNet的推理速度为12.96 ms/幅、显存占用为138.8 MB/幅,达到了当前最高的效率,远低于若干主流或最新的模型。结论CentroidNet具有高质量、高效率和高易用性;与现有同类模型相比,进一步提高了乳腺癌Ki67细胞核中心点检测的可行性。
关键词
乳腺癌
Ki67分数
中心点检测
一对一标签匹配
锚点
Keywords
breast cancer
Ki67 score
centroid detection
one-to-one label assignment
anchor point
分类号
TP391 [自动化与计算机技术—计算机应用技术]
原文传递
题名
作者
出处
发文年
被引量
操作
1
CentroidNet:轻量快速的乳腺癌Ki67细胞核中心点检测模型
文可
金旭
安虹
何杰
王珏
《中国图象图形学报》
CSCD
北大核心
2023
1
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部