To study the relationship between grouting effect and grouting factors, three factors (seven parameters) directionless pressure and small cycle grouting model experiment on sandy gravel was done, which was designed ...To study the relationship between grouting effect and grouting factors, three factors (seven parameters) directionless pressure and small cycle grouting model experiment on sandy gravel was done, which was designed according to uniform design method. And regressing was applied to analysis of the test data. The two models test results indicate that when the diffusing radius of grout changes from 26 to 51 cm, the grouted sandy gravel compressing strength changes from 2.13 to 12.30 MPa; the relationship between diffusing radius(R) and water cement ratio(m), permeability coefficient(k), grouting pressure(p), grouting time(t) is R=19.953m^0.121k^0.429p^0.412t^0.437; the relationship between compressing strength(P) and porosity(n), water cement ratio, grouting pressure, grouting time is P =0.984n^0.517m6-1.488p^0.118t^0.031. So the porosity of sandy gravel, the permeability coefficient of sandy gravel, grouting pressure, grouting time, water cement ratio are main factors to influence the grouting effect. The grouting pressure is the main factor to influence grouting diffusing radius, and the water cement ratio is the main factor to influence grouted sandy gravel compressing strength.展开更多
The Revised Universal Soil Loss Equation (RUSLE) was applied to assess the spatial distribution and dynamic properties of soil loss with geographic information system (GIS) and remote sensing (RS) technologies. ...The Revised Universal Soil Loss Equation (RUSLE) was applied to assess the spatial distribution and dynamic properties of soil loss with geographic information system (GIS) and remote sensing (RS) technologies. To improve the accuracy of soil-erosion estimates, a new C-factor estimation model was developed based on land cover and time series normalized difference vegetation index (NDVI) datasets. The new C-factor was then applied in the RUSLE to integrate rainfall, soil, vegetation, and topography data of different periods, and thus monitor the distribution of soil erosion patterns and their dynamics during a 3o-year period of the upstream watershed of Miynn Reservoir (UWMR), China. The results showed that the new C-factor estimation method, which considers land cover status and dynamics, and explicitly incorporates within-land cover variability, was more rational, quantitative, and reliable. An average annual soil loss in UWMR of 25.68, 21.04, and 16.8o t ha-1 a-1 was estimated for 1990, 2000 and 2010, respectively, corroborated by comparing spatial and temporal variation in sediment yield. Between 2000 and 2010, a 1.38% average annual increase was observed in the area of lands that lost less than 5 t ha-1 a^-1, while during 1990-2000 such lands only increased on average by o.46%. Areas that classified as severe, very severe and extremely severe accounted for 5.68% of the total UWMR in 2010, and primarily occurred in dry areas or grasslands of sloping fields. The reason for the change in rate of soil loss is explained by an increased appreciation of soil conservation by developers and planners. Moreover,we recommend that UWMR watershed adopt further conservation measures such as terraced plowing of dry land, afforestation, or grassland enclosures as part of a concerted effort to reduce on-going soil erosion.展开更多
基金Foundation item: Project(40372124) supported by the National Natural Science of China project(05R214145) supported by Postdoctor Research Foundation of Chinaproject(B308) supported by Shanghai Leading Academic Discipline
文摘To study the relationship between grouting effect and grouting factors, three factors (seven parameters) directionless pressure and small cycle grouting model experiment on sandy gravel was done, which was designed according to uniform design method. And regressing was applied to analysis of the test data. The two models test results indicate that when the diffusing radius of grout changes from 26 to 51 cm, the grouted sandy gravel compressing strength changes from 2.13 to 12.30 MPa; the relationship between diffusing radius(R) and water cement ratio(m), permeability coefficient(k), grouting pressure(p), grouting time(t) is R=19.953m^0.121k^0.429p^0.412t^0.437; the relationship between compressing strength(P) and porosity(n), water cement ratio, grouting pressure, grouting time is P =0.984n^0.517m6-1.488p^0.118t^0.031. So the porosity of sandy gravel, the permeability coefficient of sandy gravel, grouting pressure, grouting time, water cement ratio are main factors to influence the grouting effect. The grouting pressure is the main factor to influence grouting diffusing radius, and the water cement ratio is the main factor to influence grouted sandy gravel compressing strength.
基金supported by the National Natural Science Foundation of China (Grant No.41101399)the open fund of State Key Laboratory of Remote Sensing ScienceJointly Sponsored by the Institute of Remote Sensing Applications of Chinese Academy of Sciences and Beijing Normal University,China
文摘The Revised Universal Soil Loss Equation (RUSLE) was applied to assess the spatial distribution and dynamic properties of soil loss with geographic information system (GIS) and remote sensing (RS) technologies. To improve the accuracy of soil-erosion estimates, a new C-factor estimation model was developed based on land cover and time series normalized difference vegetation index (NDVI) datasets. The new C-factor was then applied in the RUSLE to integrate rainfall, soil, vegetation, and topography data of different periods, and thus monitor the distribution of soil erosion patterns and their dynamics during a 3o-year period of the upstream watershed of Miynn Reservoir (UWMR), China. The results showed that the new C-factor estimation method, which considers land cover status and dynamics, and explicitly incorporates within-land cover variability, was more rational, quantitative, and reliable. An average annual soil loss in UWMR of 25.68, 21.04, and 16.8o t ha-1 a-1 was estimated for 1990, 2000 and 2010, respectively, corroborated by comparing spatial and temporal variation in sediment yield. Between 2000 and 2010, a 1.38% average annual increase was observed in the area of lands that lost less than 5 t ha-1 a^-1, while during 1990-2000 such lands only increased on average by o.46%. Areas that classified as severe, very severe and extremely severe accounted for 5.68% of the total UWMR in 2010, and primarily occurred in dry areas or grasslands of sloping fields. The reason for the change in rate of soil loss is explained by an increased appreciation of soil conservation by developers and planners. Moreover,we recommend that UWMR watershed adopt further conservation measures such as terraced plowing of dry land, afforestation, or grassland enclosures as part of a concerted effort to reduce on-going soil erosion.